在洛谷上参加了个比赛....写写题解 rank3....共5人...(捂脸

没有注明是官方代码的均是我比赛时本人提交的代码

T1  洗牌

题目描述

小明把 n (n 为偶数)张牌按编号顺序 1, 2, 3, …, n 排成一堆,然后开始洗牌。 一次洗牌的过程如下:

  1. 对于一堆牌编号为 a1, a2, …, an,首先将牌分成均匀的两堆:a1, a2, …, am和 am+1, am+2, …, an (其中 m = n/2)

  2. 然后按顺序交叉插入:a1, am+1, a2, am+2, …, am, an

洗牌过程总共重复了 k 次,请你编程帮助小明模拟洗牌的过程。

例如 n = 6, 初始时牌堆中牌的编号为 1, 2, 3, 4, 5, 6。首次洗牌时,会将牌分成 1, 2, 3 和 4, 5, 6 两堆, 交叉插入后的结果为 1, 4, 2, 5, 3, 6。再次洗牌,会将牌分成 1, 4, 2 和 5, 3, 6 两堆。 交叉插入后得到 1, 5, 4, 3, 2, 6。

输入输出格式

输入格式:

正整数 n (牌的数量), k (洗牌的次数), i (牌的位置)。 1 ≤ n, k ≤ 1,000, 1 ≤ i ≤ n,保证 n 是偶数。

输出格式:

n 张牌洗牌 k 次后, 牌堆中第 i 张牌的编号。

输入输出样例

输入样例#1:

6 2 5
输出样例#1:

2
输入样例#2:

400 300 200
输出样例#2:

368

说明

1 ≤ n, k ≤ 1,000, 1 ≤ i ≤ n,保证 n 是偶数。

题目大意

有1 2 3 4 5...n张牌,洗牌规则是,将牌分成两份,a1,a2,a3,am,和am+1,am+2,an,其中m=n/2

排成a1 am+1 a2 am+2.....求洗k次牌后第i张牌的编号

题解

模拟 开tmp数组存排完后的牌

#include<iostream>
#include<cstdio>
using namespace std;
int n,k,g,pos,mid,kk,j,t,st[],tmp[];
int main(){
scanf("%d%d%d",&n,&kk,&pos);
t=n;mid=n/+;n=n%;
// if(n==0){printf("%d\n",pos);return 0;}
for(int i=;i<=t;i++)st[i]=i;
for(int i=;i<=kk;i++){
k=;g=mid;j=;
while(k<mid&&g<=t){
tmp[++j]=st[k];
tmp[++j]=st[g];
k++;g++;
}
for(int a=;a<=t;a++)st[a]=tmp[a];
}
printf("%d\n",st[pos]);
return ;
}

标程:比我的简洁多了....

#include<iostream>
#include<cstdio>
using namespace std;
int n,k,ii,a[],b[];
int main(){
scanf("%d%d%d",&n,&k,&ii);
for(int i=;i<=n;i++)a[i]=i;
for(int i=;i<=k;i++){
for(int j=;j<=n;j++)
if(j%==)b[j]=a[(j+)/];
else b[j]=a[n/+j/];
for(int j=;j<=n;j++)a[j]=b[j];
}
printf("%d\n",a[ii]);
return ;
}

T2  字符串替换

题目描述

小明最近迷上了字符串操作。 对每个字符串, 小明每次可以执行以下两种操作之一:

  1. 把字符串中的某个字符改成任意一个其他字符,花费 1 的代价。

  2. 交换字符串中的两个字符,花费 0 的代价。

小明发现,把一个字符串通过一系列的操作,可以转换成任何一个与之等长的字符串。 例如,把“hello” 变为“world” 的一种代价为 3 的操作序列如下:

1. hello → wello (替换 h 为 w,代价为 1)
2. wello → wolle (交换 e 和 o,代价为 0)
3. wolle → worle (替换 l 为 r,代价为 1)
4. worle → world (替换 e 为 d,代价为 1)

小明发现,无法用少于 3 次的代价将“hello”变为“world”。 显然,不同的转换方案花费的代价是不同的, 请编程帮助小明计算把一个字符串变为另一个字符串的最小代价。

本题中的字符串根据给定的初始数值 s 按以下规则生成:

for i = 1, 2, … n

s ← (s × 345) mod 19997

第一个字符串的第 i 个字符的 ASCII 码为(97 + (s mod 26))

for i = 1, 2, … n

s ← (s × 345) mod 19997

第二个字符串的第 i 个字符的 ASCII 码为(97 + (s mod 26))

输入输出格式

输入格式:

正整数 n (字符串长度), s (数据生成器的初始数值)。 1 ≤ n ≤ 1,000, 1 ≤ s ≤ 19,997。

输出格式:

将第一个字符串转换为第二个字符串的最少代价。

输入输出样例

输入样例#1:

4 35
输出样例#1:

2
输入样例#2:

100 31
输出样例#2:

29

说明

在样例 1 中,生成的字符串是“lzvv”和“ xylv”,将第一个字符串变为第二个的最小代价为 2。

题目大意

啊 这题我没做...

官方代码

#include<iostream>
#include<cstdio>
using namespace std;
int main()
{
int i,n,s,minn,ans=;
int a[]={},b[]={};
cin>>n>>s;
for(i=;i<=n;++i){
s=(s*)%;
a['a'+s%]++;
}
for(i=;i<=n;++i){
s=(s*)%;
b['a'+s%]++;
}
for(i='a';i<='z';++i){
minn=min(a[i],b[i]);
ans+=a[i]-minn;
}
cout<<ans<<endl;
return ;
}

T3 数列求和

题目描述

小明写出了一个数列, 第 i 项 ai的值为 i2。数列从第一项(i = 1)开始如下:1, 4, 9, 16, 25, …编程求出这个数列前 n 项的和。

输入输出格式

输入格式:

整数 n (1 ≤ n ≤ maxlonglong.)

输出格式:

一个整数: a1 + a2 + ··· + an的值。

输入输出样例

输入样例#1:

6
输出样例#1:

91

题目大意 

求1^2+2^2+...n^2的和

题解

我写(逃 了一大串高精度啊...不贴了...官方标程..

代码

#include<iostream>
#include<cstdio>
using namespace std;
int main()
{
int n,i,sum=;
cin>>n;
for(i=;i<=n;++i)
sum+=i*i;
cout<<sum<<endl;
return ;
}

T4 堆木头

题目描述

有n根木头(2<=n<=10^20),堆成k层(2≤k≤n),要求下层木头数为上层木头数加1.

例如:n=6

堆法有

1种堆法。

n=9 堆法有

2种堆法。

n=4 不可能有符合条件的堆法。

输入输出格式

输入格式:

一个整数n。

输出格式:

一个整数,即堆法数,若不可能,则输出0.

输入输出样例

输入样例#1:

21
输出样例#1:
3


题解
唔...这题我不会...算了去看看叭...(5min后....
代码
60分做法暴力枚举第一层的层数
#include<iostream>
#include<cstdio>
using namespace std;
long long n,ans;
int main(){
scanf("%lld",&n);
for(int i=;i<=n-;i++){
long long t=,k=i;
while(){
t+=k;k++;
if(t==n){ans++;break;}
if(t>n)break;
}
}
printf("%lld\n",ans);
return ;
}

100分做法 我把官方的pas翻译成了c++ 玄学

#include<iostream>
#include<cstdio>
using namespace std;
long long n,ans;
int main(){
scanf("%lld",&n);n=n*;
for(long long k=;k*k<n;k++){
if(n%k==)if (((n/k)-k+)%==)ans++;
}
printf("%lld\n",ans);
return ;
}
T5 Smart 的函数

题目描述


Smart定义p(n)表示n大于1的最小的约数,如P(5)=5,P(6)=2。


对于n,他又定义Smart函数F(n)为F(n)= p(2) + p(3) + …… + p(n)。


现在给你N的值,求N的Smart函数F(N)的值。


输入输出格式

输入格式:

输入一行,包含一个整数,即N。


输出格式:


输出一行,包含一个整数,表示所求的函数值。



输入输出样例


输入样例#1:

10
输出样例#1:

28

说明


60%的数据:N≤10^5;


100%的数据:2≤N≤5*10^7。


【样例说明】


P(2)=2,P(3)=3,P(4)=2,P(5)=5,P(6)=2,P(7)=7,P(8)=2,P(9)=3,P(10)=2.


F(10)=P(2)+P(3)+…+P(10)=2+3+2+5+2+7+2+3+2=28。

代码

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int f[],n;
int min_y(int x){
int gg=x;
for( gg=;gg<=x;gg++){
if(x%gg==)break;
}
return gg;
}
int main(){
scanf("%d",&n);f[]=;
// for(int i=3;i<=8;i++)cout<<min_y(i)<<endl;
for(int i=;i<=n;i++){
f[i]=min_y(i)+f[i-];
}
printf("%d\n",f[n]);
return ;
}

T6 Smartの牛

题目描述

Smart 开办了一个农场。他在第一年的时候买了一只刚出生牛,这只牛在第四年的时候就能生一头小牛,以后每年这头牛就会生一头小牛。(出题人:不要问我为什么)

这些小牛成长到第四牛又会生小牛,以后每年同样会生一头牛,假设牛不死,如此反复。请问n年后,这个农场会有多少头牛?

输入输出格式

输入格式:

共一行。包含一个整数n。

输出格式:

共一行。包含一个整数,即n年后,Smart 的农场共有多少头牛。

输入输出样例

输入样例#1:

1
输出样例#1:

1
输入样例#2:

6
输出样例#2:

4

说明

对于 100% 的数据,n<=100000.

【样例说明】

第一头牛,它经过了第0年,第一年,第二年,第三年。生下一头小牛。牛总数为2.

(由于小牛要过四年才能生牛,所以不考虑)

由于第一头牛以后每年都生一头小牛,第四年生了一头,第五年也生了一头。

所以牛总数为 6.

题解 :递推 ...f[i]为第i年的牛的数量,f[i]=f[i-3]+f[i-1],f[i-3]为经过了四年i-3年的那些牛生的小牛,再加上i-1的那些的牛

代码

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n;
int f[];
int main(){
scanf("%d",&n);
if(n<){printf("1\n");return ;}
f[]=f[]=f[]=;
for(int i=;i<=n;i++){
f[i]=f[i-]+f[i-];
}
printf("%d",f[n]);
return ;
}

T7 Smart的读书计划

题目描述

Smart 正在准备比赛,因为再过了几天他就要参加一场重要的比赛。于是他拿出了他的比赛秘籍,准备在两天之内研读完毕。但又有一个大问题,这本书太厚了!!Smart 急的抓耳挠腮。

正巧,Smart 的女友 Clever 来到了她家,Smart 心急如焚的询问该怎么读这本书。他说:“这本书一共有N页,分别是a1,a2···aN-1,aN,每一页上都会有一个比赛的'妙招',a1,a2···aN-1,aN页上每页上的'妙招',都有自己对应的编号,但是有许多'妙招'在书中重复说了很多遍,但是我现在时间不够,不能完整读完整本书,我想只读一些连续的页数,就能学完所有'妙招',请你帮我想想办法呗!”Clever 想了想,把这个问题交给了会编程的你。你能帮 Smart 解忧吗?

输入输出格式

输入格式:

共 2 行。第一行为一个整数N,即书的页数。

第二行为 N 个非负整数,即每页对应 ‘妙招’的编号。

输出格式:

共一行。包含一个整数,即满足 Smart 条件的读书最少页数。

(Smart 的条件:我想只读一些连续的页数,就能学完所有'妙招')

输入输出样例

输入样例#1:

4
1 3 3 1
输出样例#1:

2

说明

对于 100 % 的数据,N<=1000000.

保证每个 ‘妙招’ 的编号为非负整数,且在 int 范围内。

题目大意 求一段区间 使的这个区间包含总序列所有不重复的数且区间长度最小

题解 二分答案 二分区间长度看看能不能包含所有的数 能则缩小区间长度 否则变大区间长度

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<set>
using namespace std;
int n,bok[],tmp[];
int l,r,mid,siz,ans;
set<int>q;
int ok(int l){
q.clear();
for(int i=;i+l-<=n;i++){
for(int j=i;j<=i+l-;j++){
q.insert(tmp[j]);
}
if(q.size()==siz)return ;
else q.clear() ;
}
return ;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&bok[i]),tmp[i]=bok[i];
sort(bok+,bok+n+);
siz=unique(bok+,bok+n+)-bok-;
l=,r=n;
while(l<=r){
mid=(l+r)>>;
if(ok(mid))ans=mid,r=mid-;
else l=mid+;
}
printf("%d",ans);
return ;
}

T8 Smart 和 Clever 的纪念日

题目背景

年少来友情客串啦!!!

参演人员:Smart,Clever,年少。

题目描述

Smart 和 Clever 的一周年纪念日眼看着就要到来了。

Smart 是一个有选择恐惧症的人,他自己也不知道该送什么给自己的女友Clever,于是找来了他的deskmate:年少!

Smart 赶紧问年少该如何挑选礼物,不料,年少也不爱选择。正当两人愁眉苦脸时,年少突然说:“我虽然不能帮你选礼物,但我可以帮你计算!”Smart 又说:“正好,我妈最近几天要过生日了,我正好帮两人都买点礼物,你就帮我算算怎样分配才能使Clever 和我妈的礼物价值相差最小?”年少说:“没问题!”这时,Clever 飘了进来,对Smart 说:“别忘了明天是一周年哦~~”······

输入输出格式

输入格式:

共两行。第一行为一个整数,即 Smart 买的礼物个数 P。

第二行为 P 个整数,即每个礼物的价值。

输出格式:

共一行。包含一个整数,即所有礼物分成两组后的最小价值差。

输入输出样例

输入样例#1:

3
15 6 8
输出样例#1:

1

说明

对于 100 % 的数据,n<=35。

保证每个礼物的价值为非负整数,且<=15000.

题目大意

md做题还撒狗粮

有n个礼物 每个礼物有价值 求礼物分成两组后的最小价值差

题解

礼物排序后前缀和分组

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,v[],sum[],ans=;
int min_(int x,int y){return x<y?x:y;}
int abs_(int x){return x<?(-x):x;}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&v[i]);
}
sort(v+,v+n+);
for(int i=;i<=n;i++)sum[i]=sum[i-]+v[i];
for(int i=;i<n;i++)ans=min_(ans,abs_(sum[i]-sum[n]+sum[i]));
printf("%d",ans);
return ;
}

官方题解 DFS

#include <bits/stdc++.h>
#define max(a,b) a>b?a:b
int V,ans,n,w[],sum[];
void dfs(int i,int cnt)
{
if(i == )
{
ans = max(ans,cnt);
return ;
}
if(ans == V || cnt+sum[i] <= ans)
return ;
if(cnt+w[i] <= V)
dfs(i-,cnt+w[i]);
dfs(i-,cnt);
}
int main()
{
scanf("%d",&n);
ans = ;
for(int i=;i<=n;i++)
{
scanf("%d",&w[i]);
sum[i] = sum[i-] + w[i];
}
V = sum[n]/;
dfs(n,);
printf("%d\n",sum[n]-*ans);
return ;
}

年少和 Smart の日常比赛 R3的更多相关文章

  1. 从头认识一下docker-附带asp.net core程序的docker化部署

    从头认识一下docker-附带asp.net core程序的docker化部署 简介 在计算机技术日新月异的今天, Docker 在国内发展的如火如荼,特别是在一线互联网公司, Docker 的使用是 ...

  2. 这可能是最为详细的Docker入门吐血总结

    这可能是最为详细的Docker入门吐血总结  https://www.cnblogs.com/ECJTUACM-873284962/p/9789130.html Docker是什么? 在计算机技术日新 ...

  3. docker入门详解

    这可能是最为详细的Docker总结 Docker是什么? 在计算机技术日新月异的今天, Docker 在国内发展的如火如荼,特别是在一线互联网公司, Docker 的使用是十分普遍的,甚至成为了一些企 ...

  4. Webduino Smart 从入门到起飞

    前言 原创文章,转载引用务必注明链接.水平有限,如有疏漏,欢迎指正. 试用了一下,感觉这板子+WebduinoBlockly在线开发环境,下限低.上限也低,以后肯定要刷其他固件的.举个简单的例子,WB ...

  5. flume+kafka+smart数据接入实施手册

    1.  概述 本手册主要介绍了,一个将传统数据接入到Hadoop集群的数据接入方案和实施方法.供数据接入和集群运维人员参考. 1.1.   整体方案 Flume作为日志收集工具,监控一个文件目录或者一 ...

  6. zookeeper 用法和日常运维

    本文以ZooKeeper3.4.3版本的官方指南为基础:http://zookeeper.apache.org/doc/r3.4.3/zookeeperAdmin.html,补充一些作者运维实践中的要 ...

  7. JSOI2015 R3 退队滚粗了

    JSTSC最终落下帷幕,最终还是没能翻盘成功——退队了,遗憾啊,中原得鹿不由人 day0 没啥好说的,我一开始把省常中和常州一中搞混了……,不过常州一中的伙食还是相当良心的,比省常中好 考前感觉状态不 ...

  8. JQuery Smart UI

    JQuery Smart UI 个人开发的一套使用htm+js的开发框架 SmartUI2.0后续声明 摘要: 感谢很多朋友关注,因为今年一直在另外一个公司做顾问,网络环境管制相当严格,所以一直没有更 ...

  9. [日常] NOIP前集训日记

    写点流水账放松身心... 10.8 前一天考完NHEEE的一调考试终于可以开始集训了Orz (然后上来考试就迟到5min, GG) T1维护队列瞎贪心, 过了大样例交上去一点也不稳...T出翔只拿了5 ...

随机推荐

  1. C#/.NET基于Topshelf创建Windows服务的守护程序作为服务启动的客户端桌面程序不显示UI界面的问题分析和解决方案

    本文首发于:码友网--一个专注.NET/.NET Core开发的编程爱好者社区. 文章目录 C#/.NET基于Topshelf创建Windows服务的系列文章目录: C#/.NET基于Topshelf ...

  2. Jetson TK1 一:调整屏幕分辨率

    先点击分辨率调整的那个对话框,就是1024×768之类的那个,选定一个分辨率,我选的是1366x768(16:9)的那个,然后连续按7下tab按键,然后回车,然后再点击弹出的选项右边一个就能保存了.

  3. Windows Phone 8.1 开发实例 网络编程 天气预报

    首先感谢林政老师的博客,给了我很大的指导. 准备工作 我的开发环境: - Visual Studio 2013(With Update 4) - Windows Phone 8.1 - Windows ...

  4. Java程序的编译过程?由.java 到.class的过程?

    Javac是一种编译器,它的任务就是将Java源代码语言转化为JVM能够识别的一种语言,然后由JVM将JVM语言再转化成当前这个机器能够识别的机器语言 词法分析器:读取源代码,一个字节一个自己的读取出 ...

  5. ORACLE 内部原理

    http://www.ohsdba.cn/index.php?m=Article&a=index&id=46 内部原理 2016-05-04• 如何使用BBED 2016-04-16• ...

  6. Material Theme

    Material Theme提供了一下功能: 1.系统widgets可以设置调色板 2.系统widgets的触摸反馈 3.Activity过渡动画 你可以根据你品牌的色彩来定义Material The ...

  7. LSA、LDA

     Latent semantic analysis (LSA) is a technique in natural language processing, in particular distrib ...

  8. C# 实体类序列化与反序列化一 (XmlSerializer)

    /// <summary> /// 实体类序列化的反序列化的类 /// </summary> /// <typeparam name="T">& ...

  9. 8. Smarty3:模版中的内置函数

    smarty3中对内置函数的修改比較大,加入了很多新的功能:变量声明.表达式,流程控制,函数.数组等.可是建议不要在模版中去使用过于复杂的逻辑,而是要尽量将一些程序设计逻辑写到PHP中,并在模版中採用 ...

  10. 子结点childNodes

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...