使用device-tree (DT) overlay应该是更方便的方法:

http://blog.gegg.us/2017/01/setting-up-a-gpio-button-keyboard-on-a-raspberry-pi/

Back in late 2013, when I wrote the first Version of a raspberry-pi based software controlling a HD44780 based 4×20 characters LCD and 4 input buttons I started querying the buttons using the generic GPIO driver included in Raspbian and its sysfs interface.

However, this has a couple of drawbacks. First of all it is hardly portable to other Linux based hardware and one has to do a lot of stuff like debouncing on the application level.

Fast forward to early 2017. Raspbian now uses a device-tree based approach for system setup and a driver called gpio-keys is readily available in its standard kernel.

However, as it is often the case in the Free Software world, the documentation of this driver is limited to some README files included in the Linux kernel and some discussions scattered all around the web.

Linux already has drivers for almost all of the common low level peripheral interfaces like I2C, SPI, OneWire, hardware PWM and generic GPIO. It is usually the better approach to use them instead of constantly re-inventing the wheel.

So here is my quick guide for setting up a “keyboard” made up from a couple of buttons connected via GPIO ports as shown in the image.

While this has currently only been tested on Raspberry Pi, it will likely also work on other Linux based boards with device tree enabled (e.g Beaglebone and others).

Keyboards in modern Linux Kernels are presented to userland as a so called input event device. To inspect them I would recommend the installation of the evtest and input-utils packages on Debian/Ubuntu based distributions. The lsinput command (run as root) shows which ones are available on a system.

So, what do we need to do to make a keyboard from our GPIO connected push-buttons?

The missing link between the gpio-keys driver and the setup of the actual GPIO ports, where the buttons are connected to, is a so called device-tree (DT) overlay.

While DT itself is a data structure for describing hardware, a DT overlay is something a user can put in place to change such a hardware description in a way which matches the actual application scenario (like buttons, buses etc. connected to the device).

So let’s build such an overlay for the four buttons shown in our schematic above.

The Documentation available at raspberrypi.org provides some clues about device tree overlays as well.

Here is the final result which works, so let’s go into the details:

/dts-v1/;
/plugin/;
/ {
compatible = "brcm,bcm2835", "brcm,bcm2708", "brcm,bcm2709"; fragment@0 {
target-path = "/";
__overlay__ {
keypad: breadboard_keys {
compatible = "gpio-keys";
#address-cells = <1>;
#size-cells = <0>;
autorepeat;
button@22 {
label = "breadboard Menu";
linux,code = <28>;
gpios = <&gpio 22 1>;
};
button@10 {
label = "breadboard down";
linux,code = <108>;
gpios = <&gpio 10 1>;
};
button@9 {
label = "breadboard up";
linux,code = <103>;
gpios = <&gpio 9 1>;
};
button@11 {
label = "breadboard enter";
linux,code = <14>;
gpios = <&gpio 11 1>;
};
};
};
};
};

Our overlay fragment contains a keypad called breadboard_keys. This is actually the string which lsinput will show as the actual name of our input device. 22, 10, 9 and 11 are the GPIO port numbers corresponding to the green wires in our schematic.

The file gpio-keys.txt from the Linux Kernel source-tree will show us what our four button definitions need to look like. We need a label, which is arbitrary text, a linux,code which is actually a keycode as defined in /usr/include/linux/input-event-codes.h and we need a gpio definition with two options, the number of the GPIO to use and a boolean value indicating if the button is active low (1, as in our case) or active high (0).

Another thing I would like to point at is the autorepeat keyword. If given this will activate a key-press repeat behavior known from ordinary keyboards. The production of key-press-events will be repeated as long as the button is pressed.

Now how to enable this overlay on Raspberry Pi?

Very simple, once you know how ��

First put the above code in a file e.g. breadboard.dts.

Then compile a binary version and put it into the right place:

dtc -I dts -O dtb -o /boot/overlays/breadboard.dtbo breadboard.dts

Finally the following line must be added to /boot/config.txt:

dtoverlay=breadboard

Now we are done.

Here is how this looks like on the software side without any other input devices like keyboards connected:

root@raspberrypi:~# lsinput
/dev/input/event0
bustype : BUS_HOST
vendor : 0x1
product : 0x1
version : 256
name : "breadboard_keys"
phys : "gpio-keys/input0"
bits ev : EV_SYN EV_KEY EV_REP root@raspberrypi:~# input-events 0
/dev/input/event0
bustype : BUS_HOST
vendor : 0x1
product : 0x1
version : 256
name : "breadboard_keys"
phys : "gpio-keys/input0"
bits ev : EV_SYN EV_KEY EV_REP waiting for events
20:00:23.629190: EV_KEY KEY_BACKSPACE (0xe) pressed
20:00:23.629190: EV_SYN code=0 value=0
20:00:23.749163: EV_KEY KEY_BACKSPACE (0xe) released
20:00:23.749163: EV_SYN code=0 value=0
20:00:23.969176: EV_KEY KEY_DOWN (0x6c) pressed
20:00:23.969176: EV_SYN code=0 value=0
20:00:24.099151: EV_KEY KEY_DOWN (0x6c) released
20:00:24.099151: EV_SYN code=0 value=0
20:00:24.329158: EV_KEY KEY_UP (0x67) pressed
20:00:24.329158: EV_SYN code=0 value=0
20:00:24.439154: EV_KEY KEY_UP (0x67) released
20:00:24.439154: EV_SYN code=0 value=0
20:00:24.669157: EV_KEY KEY_ENTER (0x1c) pressed
20:00:24.669157: EV_SYN code=0 value=0
20:00:24.759176: EV_KEY KEY_ENTER (0x1c) released
20:00:24.759176: EV_SYN code=0 value=0
root@raspberrypi:~# grep breadboard /sys/kernel/debug/gpio
gpio-9 ( |breadboard up ) in hi
gpio-10 ( |breadboard down ) in hi
gpio-11 ( |breadboard enter ) in hi
gpio-22 ( |breadboard Menu ) in hi

Finally something which is not strictly on-topic concerning this post. There is something one should know about keyboard like input event devices like this. Pressing a button will send events to all applications normally consuming them (e.g. applications running on Linux console or X-Window system).

This might be an unwanted behavior. If so, your application software needs to issue a EVIOCGRAB ioctl after opening the input device.

more references:

https://github.com/fivdi/gpio-button

树莓派 -- 输入设备驱动 (key) 续2: 转载 Setting up a GPIO-Button “keyboard” on a Raspberry Pi的更多相关文章

  1. 树莓派 -- 输入设备驱动 (key) 续1

    测试 安装 input-utils pi@raspberrypi:~ $ sudo apt-get install input-utils Reading package lists... Done ...

  2. 树莓派 -- 输入设备驱动 (key)

    输入设备(如按键,键盘,触摸屏等)是典型的字符设备,其一般工作原理是底层在按键或触摸等动作发生时产生一个中断,然后CPU通过SPI,I2C总线读取键值. 在这些工作中之后中断和读键值是与设备相关的,而 ...

  3. linux 输入设备驱动

    <输入子系统简介> a:背景 内核的输入子系统是对“分散的”,“多种不同类别”的输入设备(键盘,鼠标,跟踪杆,触摸屏,加速度计等)进行“统一处理”的驱动程序.具有如下特点: a-1:统一各 ...

  4. 【树莓派】【转载】Raspberry Pi (树莓派)折腾记

    在网上看到一篇对树莓派折腾记录比较详细的文章,时间比较早,但是有些东西没变. 对于新手而言,还是有点参考价值.文章参见:http://skypegnu1.blog.51cto.com/8991766/ ...

  5. Android中Input型输入设备驱动原理分析(一)

    转自:http://blog.csdn.net/eilianlau/article/details/6969361 话说Android中Event输入设备驱动原理分析还不如说Linux输入子系统呢,反 ...

  6. Android中Input型输入设备驱动原理分析<一>

    话说Android中Event输入设备驱动原理分析还不如说Linux输入子系统呢,反正这个是没变的,在android的底层开发中对于Linux的基本驱动程序设计还是没变的,当然Android底层机制也 ...

  7. 树莓派 -- 按键 (key)使用BCM2835 gpio library

    BCM2835 GPIO library介绍 This is a C library for Raspberry Pi (RPi). It provides access to GPIO and ot ...

  8. python代码实现树莓派3b+驱动步进电机

    python代码实现树莓派3b+驱动步进电机 之前买了个树莓派,刚买回来那会儿热情高涨,折腾了一段时间,然后就放那吃灰了.前几天忽然想起来这个东西了,决定再玩玩儿,于是就从某宝上购买了一套步进电机.驱 ...

  9. 【树莓派】【转】将树莓派Raspberry Pi设置为无线路由器(WiFi热点AP,RTL8188CUS芯片)

    下文为转载,文章转自:http://wangye.org/blog/archives/845/,仅供本次学习实践参考. 最近又开始折腾起Raspberry Pi来了,因为某处上网需要锐捷拨号,于是我就 ...

随机推荐

  1. python 面向对象八 多继承

    python是支持多继承的,在设计类的继承关系时,通常,主线都是单一继承下来的.但是,如果需要“混入”额外的功能,通过多重继承就可以实现,这种设计通常称之为MixIn. 为了更好地看出继承关系,以Mi ...

  2. bzoj 3329: Xorequ【数位dp+矩阵乘法】

    注意第一问不取模!!! 因为a+b=a|b+a&b,a^b=a|b-a&b,所以a+b=a^b+2(a&b) x^3x==2x可根据异或的性质以转成x^2x==3x,根据上面的 ...

  3. Web Scraping with R: How to Fill Missing Value (爬虫:如何处理缺失值)

    网络上有大量的信息与数据.我们可以利用爬虫技术来获取这些巨大的数据资源. 这次用 IMDb 网站的2018年100部最欢迎的电影 来练练手,顺便总结一下 R 爬虫的方法. >> Prepa ...

  4. iOS NSDictionary <--> NSString(JSON) in Objc

    NSDictionary --> NSString + (NSString*)stringINJSONFormatForObject:(id)obj { NSData *jsonData = [ ...

  5. 1.1.2最小生成树(Kruskal和Prim算法)

    部分内容摘自 勿在浮沙筑高台 http://blog.csdn.net/luoshixian099/article/details/51908175 关于图的几个概念定义: 连通图:在无向图中,若任意 ...

  6. Bryce1010的操作系统课程设计

    https://download.csdn.net/download/fire_to_cheat_/10221003 上面是课程设计的代码,下载需要一些积分. 1.作业调度 2.磁盘调度 常见的磁盘调 ...

  7. JetSpeed2部署至Apusic操作步骤记录

    JetSpeed2部署至Apusic操作步骤记录. 1.创建Apusic新域,配置端口.管理端口和管理密码. 2.将Tomcat/lib目录中的所有jar包复制至Apusic域中的lib目录中(包括数 ...

  8. WebSphere中数据源连接池太小导致的连接超时错误记录

    WebSphere中数据源连接池太小导致的连接超时错误记录. 应用连接超时错误信息: [// ::: CST] webapp E com.ibm.ws.webcontainer.webapp.WebA ...

  9. 线程间的参数传递 分类: linux c/c++ 2014-06-15 17:48 607人阅读 评论(0) 收藏

    在多线程编程中,常常需要从主线程传递参数给子线程或在主线程中获得子线程的计算结果, 若使用全局变量实现,必然需要对临界区保护,因此导致大量的切换工作造成效率的低下: 而利用进程间的参数传递可以解决这一 ...

  10. CentOS 6.5使用:[3]使用xftp传递文件

    先检查CentOS系统是否安装了FTP服务 [root@centos ~]# rpm -qa | grep vsftpd 如果有内容输出,那么恭喜你,你的系统已经安装了ftp服务   如果没有那么按照 ...