BZOJ DZY Loves Math系列
⑤(BZOJ 3560)
$\Sigma_{i_1|a_1}\Sigma_{i_2|a_2}\Sigma_{i_3|a_3}\Sigma_{i_4|a_4}...\Sigma_{i_n|a_n}\phi(i_1i_2i_3i_4...i_n)$
$\phi()$是积性函数
$\phi(p^k)=p^{k-1}*(p-1)$
设当前质数为p,对于第i个数,假设它分解质因数后p的次数为ai,那么p的答案就是
$[(1+p^1+...+p^{a1})(1+p^1+...+p^{a2})...(1+p^1+...+p^{an})-1]\frac{p-1}{p}+1$
乘起来就好了.....
$\Sigma_{i=1}^n\Sigma_{j=1}^mlcm(i,j)^{gcd(i,j)}$
$=\Sigma_{i=1}^n\Sigma_{j=1}^m (\frac{i*j}{gcd(i,j)})^{gcd(i,j)}$
枚举gcd(i,j)=d
$=\Sigma_{d=1}^n\Sigma_{i=1}^{\lfloor \frac{n}{d}\rfloor}\Sigma_{j=1}^{\lfloor \frac{m}{d}\rfloor}(d*i*j)^d*(gcd(i,j)==1)$
$=\Sigma_{d=1}^n\Sigma_{i=1}^{\lfloor \frac{n}{d}\rfloor}\Sigma_{j=1}^{\lfloor \frac{m}{d}\rfloor}\Sigma_{k|i且k|j}(d*i*j)^d$
$=\Sigma_{d=1}^nd^d\Sigma_{t=1}^{\lfloor\frac{n}{d}\rfloor}\mu(t)[\Sigma_{i=1}^{\lfloor\frac{n}{dt}\rfloor}(it)^d\Sigma_{j=1}^{\lfloor\frac{m}{dt}\rfloor}(jt)^d]$
$=\Sigma_{d=1}^nd^d\Sigma_{t=1}^{\lfloor\frac{n}{d}\rfloor}\mu(t)*t^{2d}[\Sigma_{i=1}^{\lfloor\frac{n}{dt}\rfloor}i^d\Sigma_{j=1}^{\lfloor\frac{m}{dt}\rfloor}j^d]$
$\Sigma _{i=1}^n\Sigma _{j=1}^i\mu(lcm(i,j)^{gcd(i,j)})$
$=\Sigma_{k=1}^n\Sigma_{i=1}^{\lfloor\frac{n}{k}\rfloor}\Sigma_{j=1}^i\mu((ijk)^{k}*gcd(i,j)==1)$
$∵$k>1时 $\mu(x^k)=0$
$∴ =\Sigma_{i=1}^n\Sigma_{j=1}^i\mu(ij)*e(gcd(i,j))$
$∵gcd(i,j)==1$
$∴\mu(ij)=\mu(i)*\mu(j)$
$=\Sigma_{i=1}^n\mu(i)*\Sigma_{j=1}^i\mu(j)*\Sigma_{k|i且k|j}\mu(k)$
$=\Sigma_{i=1}^n\mu(i)*\Sigma_{k|i}\mu(k)\Sigma_{j=1}^{\lfloor\frac{i}{k}\rfloor}\mu(jk)$
$\mu(i)≠0$时 再枚举k是i的约数 发现数量只有$5*10^7$
复杂度变成了
什么复杂度
O(能过)就好了...
BZOJ DZY Loves Math系列的更多相关文章
- [BZOJ] DZY Loves Math 系列 I && II
为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\ ...
- DZY Loves Math 系列详细题解
BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd ...
- DZY Loves Math系列
link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1 ...
- bzoj DZY Loves Math V
Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 509 Solved: 284[Submit][Status][Discuss] Descriptio ...
- ●BZOJ 3309 DZY Loves Math
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
- BZOJ 3309: DZY Loves Math
3309: DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 761 Solved: 401[Submit][Status ...
- 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化
3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...
- BZOJ 3512: DZY Loves Math IV [杜教筛]
3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...
随机推荐
- CCF201409-2 画图 java(100分)
试题编号: 201409-2 试题名称: 画图 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 在一个定义了直角坐标系的纸上,画一个(x1,y1)到(x2,y2)的矩形指将横坐 ...
- Python基础(五)集合与函数
一.Set集合 set和dict类似,也是一组key的集合,但不存储value.由于key不能重复,所以,在set中,没有重复的key.下面一起看一下set的定义和使用方法: (一),set定义 1 ...
- linux下使用tomcat下载中文文件报404not find
首先,大神指路:http://bbs.csdn.net/topics/391065011?page=1 相关的一些命令: 查看当前系统字符编码:env locale 查看系统支持的字符编码:local ...
- win7 32位机安装VMware win7 64位虚拟机
VMware10虚拟机怎么安装win7系统(详细教程):https://jingyan.baidu.com/article/86f4a73ec62e8f37d65269a1.html 然而上述教程想不 ...
- BNUOJ 2461 Anniversary party
Anniversary party Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Origi ...
- [HDU3586]Information Disturbing(DP + 二分)
传送门 题意:给定一个带权无向树,要切断所有叶子节点和1号节点(总根)的联系,每次切断边的费用不能超过上限limit,问在保证总费用<=m下的最小的limit 二分答案,再 DP,看看最终结果是 ...
- android调试
要进行调试,首先构建app的时候必须选择是Debug模式,而不能是Release模式. 接下来的内容转载自: http://www.cnblogs.com/gaoteng/p/5711314.html ...
- 1043 方格取数 2000 noip 提高组
1043 方格取数 2000 noip 提高组 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样 ...
- MyBatis3-缓存使用
一级缓存和二级缓存的区别: 1.一级缓存:基于PerpetualCache的HashMap本地缓存,其存储作用域为同一个SqlSession,当Session flush或close之后,该Sessi ...
- 1.3-动态路由协议RIP①
Dynamic Routing Protocol:动态路由协议 现代IP网络中,主要的动态路由协议: AD/管理距离: 1:DV/距离向量协议:RIP(120)/IGRP(100) 2:LS/链路状态 ...