题意:

给定一个长度为 N 的序列
两种操作
1 l r 将[l,r]的数向右循环移位
2 l r 询问[l,r]内有多少个数等于 k
其中 N,Q≤105,ai≤N
强制在线

思路:

1.

每块用一个链表维护一下
位移的话由于是链表,操作速度很快
然后每个数都不超过 N,所以用一个数组记录一下每块每个数的个数
总的复杂度就是 O(Qsqrt(N))

2.

如果不考虑那个奇怪的询问的话,可以简单地用splay树维护序列。但是splay上显然不能维护每种颜色的个数,这样在每个节点上时间和空间都是O(n)的。
我们把给每种颜色的节点单独建一棵splay,每个节点放在两棵splay中,一棵是原序列,一棵是它自己的颜色。接下来考虑如何进行插入、询问和删除操作。
删除操作比较简单,只需要在大splay上找到对应的节点,在两棵树中先旋转到底再自下而上删除。
插入和询问都可以在小splay上走,通过在大splay上的询问就可以知道当前节点在序列中的位置。
复杂度O((n+q)log2n)。

from yhx


//By SiriusRen
#include <bits/stdc++.h>
using namespace std;
const int N=;
int n,q,a[N],wei[][N],l[],r[],block[N],lastans;
list<int>lst[];
list<int>::iterator it,it2;
void make_list(){
for(int i=;i<=block[n];i++)
for(int j=l[i];j<=r[i];j++)
lst[i].push_back(a[j]),wei[i][a[j]]++;
}
void work(int x,int y){
int t=y-l[block[y]],tmp,rem;
for(it=lst[block[y]].begin();t;t--,it++);
rem=*it;wei[block[y]][rem]--;
lst[block[y]].erase(it);
for(int i=block[x];i<block[y];i++){
it=lst[i].end(),it--,tmp=*it,lst[i].erase(it);
lst[i+].push_front(tmp);
wei[i][tmp]--,wei[i+][tmp]++;
}
t=x-l[block[x]];
for(it=lst[block[x]].begin();t;t--,it++);
lst[block[x]].insert(it,rem);wei[block[x]][rem]++;
}
int query(int x,int y,int z){
int ans=,t=x-l[block[x]],ty;
if(block[x]==block[y]){
for(it=lst[block[x]].begin();t;t--,it++);
ty=y-l[block[y]]+;
for(it2=lst[block[x]].begin();ty;ty--,it2++);
for(;it!=it2;it++){if(*it==z)ans++;}
return ans;
}
for(int i=block[x]+;i<block[y];i++)ans+=wei[i][z];
for(it=lst[block[x]].begin();t;t--,it++);
for(;it!=lst[block[x]].end();it++)if(*it==z)ans++;
t=y-l[block[y]]+;
for(it=lst[block[y]].begin();t;it++,t--)if(*it==z)ans++;
return ans;
}
int main(){
memset(l,0x3f,sizeof(l)),scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
int Block=1.6*sqrt(n);
for(int i=;i<=n;i++)block[i]=(i-)/Block+,l[block[i]]=min(l[block[i]],i),r[block[i]]=i;
make_list();
scanf("%d",&q);
while(q--){
int op,xx,yy,zz;
scanf("%d%d%d",&op,&xx,&yy);
xx=(xx+lastans-)%n+,yy=(yy+lastans-)%n+;
if(xx>yy)swap(xx,yy);
if(op==)work(xx,yy);
else scanf("%d",&zz),printf("%d\n",lastans=query(xx,yy,(zz+lastans-)%n+));
}
}

Codeforces 455D 分块+链表的更多相关文章

  1. CodeForces 455D 分块

    题目链接:http://codeforces.com/problemset/problem/455/D 题意:给定一个长度为n的序列a[]. m次操作.共有两种操作 1 l r:将序列的a[l].a[ ...

  2. Serega and Fun CodeForces - 455D (分块 或 splay)

    大意:给定n元素序列, 2种操作 将区间$[l,r]$循环右移1位 询问$[l,r]$中有多少个等于k的元素 现在给定q个操作, 输出操作2的询问结果, 强制在线 思路1: 分块 每个块内维护一个链表 ...

  3. Serega and Fun Codeforces - 455D || queue

    https://codeforces.com/problemset/problem/455/D 其实方法很多,然而当初一个也想不到... 1.分块,块内用链表维护 修改[l,r]就当成删除第r个元素, ...

  4. CodeForces 444C 分块

    题目链接:http://codeforces.com/problemset/problem/444/C 题意:给定一个长度为n的序列a[].起初a[i]=i,然后还有一个色度的序列b[],起初b[i] ...

  5. CodeForces 551E 分块

    题目链接:http://codeforces.com/problemset/problem/551/E 题意:给定一个长度为N的序列. 有2个操作 1 l r v:序列第l项到第r项加v(区间加), ...

  6. CodeForces 103D 分块处理

    题目链接:http://codeforces.com/problemset/problem/103/D 题意:给定一个长度为n的序列.然后q个询问.每个询问为(a,b),表示从序列第a项开始每b项的加 ...

  7. Codeforces Round #423 (Div. 2, rated, based on VK Cup Finals) Problem E (Codeforces 828E) - 分块

    Everyone knows that DNA strands consist of nucleotides. There are four types of nucleotides: "A ...

  8. 【CF896E】Welcome home, Chtholly 暴力+分块+链表

    [CF896E]Welcome home, Chtholly 题意:一个长度为n的序列ai,让你支持两种操作: 1.l r x:将[l,r]中ai>x的ai都减去x.2.l r x:询问[l,r ...

  9. 51nod 1471 小S的兴趣 | 分块 链表

    51nod 1471 小S的兴趣 题面 小S喜欢有趣的事.但是,每个人的兴趣都是独特的.小S热衷于自问自答.有一天,小S想出了一个问题. 有一个包含n个正整数的数组a和针对这个数组的几个问题.这些问题 ...

随机推荐

  1. python 基础知识及运算符

    可变类型:列表.字典 不可变类型:整形.字符串.元组 标示符: 1.字母数字和下划线组成 2.不能以数字开头 3.区分大小写 4.不能以保留字命名 变量: 1.用描述性的单词命名变量,不要用保留字.汉 ...

  2. NT9666X调试log

    1.给GSensor_open();前加上打印函数DEBUG_P;打印如下信息: ######## FILE = e:/Project_code/Philips_PanGu/Philips_PanGu ...

  3. UVa - 12617 - How Lader

    先上题目:   How Lader  Lader is a game that is played in a regular hexagonal board (all sides equal, all ...

  4. [K/3Cloud]如何解决K3Cloud 2.0审批流提交时报“队列不存在,或您没有足够的权限执行该操……

    按照图上的操作即可解决不可提交的问题,但如果应用服务器是部署在域环境下,应该不会出错,这是微软support上说的

  5. 轰炸III(codevs 1830)

    题目背景 一个大小为N*M的城市遭到了X次轰炸,每次都炸了一个每条边都与边界平行的矩形. 题目描述 在轰炸后,有Y个关键点,指挥官想知道,它们有没有受到过轰炸,如果有,被炸了几次,最后一次是第几轮. ...

  6. PatentTips – GPU Saving and Restoring Thread Group Operating State

    BACKGROUND OF THE INVENTION The present invention relates generally to single-instruction, multiple- ...

  7. 关于使用CELERY的一点心得

    使用也有大半年了.稳定性没话说啊. 但有一个坑,是我以前没注意的,记录下来. 就是本来一个任务是可以异步并行执行的..但如何需要CELERY的执行结果来作判断的话,就会变得异步串行的. 这要值得注意. ...

  8. [kuangbin带你飞]专题六 最小生成树 N - 畅通工程再续

    相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全 ...

  9. 上帝说:要约炮!于是有了XMPP

    一.导入XMPP框架 下载 XMPPFramework 框架 GitHub: XMPPFramework 导入依赖框架 CocoaLumberjack : 日志框架 CocoaAsyncSocket  ...

  10. HTTP 错误 404.15 - Not Found 请求筛选模块被配置为拒绝包含的查询字符串过长的请求。

    HTTP 错误 404.15 - Not Found 请求筛选模块被配置为拒绝包含的查询字符串过长的请求. 2018-04-20 14:00 by 码农小周, 21 阅读, 2 评论, 收藏, 编辑 ...