BZOJ 3527 [Zjoi2014]力 ——FFT
【题目分析】
FFT,构造数列进行卷积,挺裸的一道题目诶。
还是写起来并不顺手,再练。
【代码】
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i) #define maxn 500005 const double pi=acos(-1.0);
const double mypi=3.1415926589793238462643383279502; struct Complex{
double x,y;
Complex operator + (Complex & a) const {Complex b; return b.x=x+a.x,b.y=y+a.y,b;}
Complex operator - (Complex & a) const {Complex b; return b.x=x-a.x,b.y=y-a.y,b;}
Complex operator * (Complex & a) const {Complex b; return b.x=x*a.x-y*a.y,b.y=x*a.y+y*a.x,b;}
}a[maxn],b[maxn],c[maxn]; int n,len,m,rev[maxn],top; void FFT(Complex * x,int n,int flag)
{
F(i,0,n-1) if (rev[i]>i) swap(x[rev[i]],x[i]);
for (int m=2;m<=n;m<<=1)
{
Complex wn; wn.x=cos(2.0*pi/m*flag); wn.y=sin(2.0*pi/m*flag);
int mid=m>>1;
for (int i=0;i<n;i+=m)
{
Complex w; w.x=1.0; w.y=0;
for (int j=0;j<mid;++j)
{
Complex u=x[i+j],v=x[i+j+mid]*w;
x[i+j]=u+v; x[i+j+mid]=u-v;
w=w*wn;
}
}
}
} int main()
{
scanf("%d",&n); top=n;
F(i,0,n-1) scanf("%lf",&a[i].x);
F(i,0,2*n-2)
{
if (i==n-1) continue;
b[i].x=1.0/(n-1-i)/(n-1-i);
// printf("%d %d %.6f\n",i,(n-1-i),1.0/(n-1-i)/(n-1-i));
if (i<n-1) b[i].x*=-1;
}
// F(i,0,2*n-2) printf("%f\n",b[i].x);
m=1; n=2*n-1;
while (m<=n) m<<=1,len++; n=m;
F(i,0,n-1)
{
int t=i,ret=0;
F(j,1,len) ret<<=1,ret|=t&1,t>>=1;
rev[i]=ret;
}
FFT(a,n,1); FFT(b,n,1);
F(i,0,n) c[i]=a[i]*b[i];
FFT(c,n,-1);
F(i,top-1,2*top-2) printf("%.3f\n",c[i].x/n);
}
BZOJ 3527 [Zjoi2014]力 ——FFT的更多相关文章
- bzoj 3527 [Zjoi2014]力——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...
- bzoj 3527 [Zjoi2014] 力 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...
- BZOJ 3527: [Zjoi2014]力(FFT)
我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- ●BZOJ 3527 [Zjoi2014]力
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3527 题解: FFT求卷积. $$\begin{aligned}E_i&=\frac ...
- BZOJ 3527: [ZJOI2014]力(FFT)
BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...
- 数学(FFT):BZOJ 3527 [Zjoi2014]力
题目在这里:http://wenku.baidu.com/link?url=X4j8NM14MMYo8Q7uPE7-7GjO2_TXnMFA2azEbBh4pDf7HCENM3-hPEl4mzoe2w ...
- bzoj 3527: [Zjoi2014]力 快速傅里叶变换 FFT
题目大意: 给出n个数\(q_i\)定义 \[f_i = \sum_{i<j}{\frac{q_iq_j}{(i-j)^2}} - \sum_{i>j}\frac{q_iq_j}{(i-j ...
- bzoj 3527: [Zjoi2014]力【FFT】
大力推公式,目标是转成卷积形式:\( C_i=\sum_{j=1}^{i}a_jb_{i-j} \) 首先下标从0开始存,n-- \[ F_i=\frac{\sum_{j<i}\frac{q_j ...
随机推荐
- 压力测试工具segie的使用
压力测试工具segie的使用 使用文档参考地址:https://www.joedog.org/siege-manual/ siege4地址:http://download.joedog.org/sie ...
- Spring 配置定时器(注解+xml)方式—整理
一.注解方式 1. 在Spring的配置文件ApplicationContext.xml,首先添加命名空间 xmlns:task="http://www.springframework.or ...
- JS中的delete操作符
首先,delete删除成功返回true,失败返回false. js代码: function wxCount ($element) { this.init($element); } wxCount.pr ...
- nodejs:遍历文件夹文件统计文件大小
根据 http://blog.csdn.net/hero82748274/article/details/45700465这里的思路对读写文件做了一个 封装: webpack在打包的时候可以借助ass ...
- CeontOS6.5安装php环境
港湾云主机重装操作系统之后xshell无法连接:重启ssh:# service sshd restart -bash: vim: command not found:输入 rpm -qa|grep v ...
- WebStorm换主题(护眼)
一.下载喜欢颜色的主题 http://www.phpstorm-themes.com/ 我用的豆沙绿护眼 <scheme name="Solarized Light My" ...
- Python3 try-except、raise和assert解析
Python3 try-except.raise和assert解析 一.说明 关于异常捕获try-except:在学java的时候就被教育异常捕获也是java相对c的一大优点,几年下来多少也写了些代码 ...
- shell脚本,实现奇数行等于偶数行。
请把如下字符串stu494e222fstu495bedf3stu49692236stu49749b91转为如下形式:stu494=e222fstu495=bedf3stu496=92236stu497 ...
- javaEE(7)_自定义标签&JSTL标签(JSP Standard Tag Library)
一.自定义标签简介 1.自定义标签主要用于移除Jsp页面中的java代码,jsp禁止出现一行java脚本. 2.使用自定义标签移除jsp页面中的java代码,只需要完成以下两个步骤: •编写一个实现T ...
- ios软件设计中注意点
1.取消系统自带渲染效果 2.取消屏幕旋转 3.项目中搜索丢失文件