题目

追逐影子的人,自己就是影子 ——荷马

Allison 最近迷上了文学。她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的《荷马史诗》。但是由《奥德赛》和《伊利亚特》 组成的鸿篇巨制《荷马史诗》实在是太长了,Allison 想通过一种编码方式使得它变得短一些。

一部《荷马史诗》中有n种不同的单词,从1到n进行编号。其中第i种单 词出现的总次数为wi。Allison 想要用k进制串si来替换第i种单词,使得其满足如下要求:

对于任意的 1 ≤ i, j ≤ n , i ≠ j ,都有:si不是sj的前缀。

现在 Allison 想要知道,如何选择si,才能使替换以后得到的新的《荷马史诗》长度最小。在确保总长度最小的情况下,Allison 还想知道最长的si的最短长度是多少?

一个字符串被称为k进制字符串,当且仅当它的每个字符是 0 到 k − 1 之间(包括 0 和 k − 1 )的整数。

字符串 str1 被称为字符串 str2 的前缀,当且仅当:存在 1 ≤ t ≤ m ,使得str1 = str2[1..t]。其中,m是字符串str2的长度,str2[1..t] 表示str2的前t个字符组成的字符串。

输入格式

输入的第 1 行包含 2 个正整数 n, k ,中间用单个空格隔开,表示共有 n种单词,需要使用k进制字符串进行替换。

接下来n行,第 i + 1 行包含 1 个非负整数wi ,表示第 i 种单词的出现次数。

输出格式

输出包括 2 行。

第 1 行输出 1 个整数,为《荷马史诗》经过重新编码以后的最短长度。

第 2 行输出 1 个整数,为保证最短总长度的情况下,最长字符串 si 的最短长度。

输入样例

4 2

1

1

2

2

输出样例

12

2

提示

【样例说明 1】

用 X(k) 表示 X 是以 k 进制表示的字符串。

一种最优方案:令 00(2) 替换第 1 种单词, 01(2) 替换第 2 种单词, 10(2) 替换第 3 种单词,11(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:

1 × 2 + 1 × 2 + 2 × 2 + 2 × 2 = 12

最长字符串si的长度为 2 。

一种非最优方案:令 000(2) 替换第 1 种单词,001(2) 替换第 2 种单词,01(2)替换第 3 种单词,1(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:

1 × 3 + 1 × 3 + 2 × 2 + 2 × 1 = 12

最长字符串 si 的长度为 3 。与最优方案相比,文章的长度相同,但是最长字符串的长度更长一些。

【样例说明 2】

一种最优方案:令 000(3) 替换第 1 种单词,001(3) 替换第 2 种单词,01(3) 替换第 3 种单词, 02(3) 替换第 4 种单词, 1(3) 替换第 5 种单词, 2(3) 替换第 6 种单词。

【提示】

选手请注意使用 64 位整数进行输入输出、存储和计算。

【时限1s,内存512M】

题解

当k=2时,就等同于合并果子,每次合并权值最小的两堆

将每次合并的一堆作为父亲,被合并的两堆作为儿子,就会形成一棵树,叫做哈夫曼树

哈夫曼树中所有点到根的距离乘以权值之和最小

通常用于编码,给各种需要的信息附上不同的01串,使得文章最短,当然是出现次数越多的信息赋的01串越短

如果是K进制,就要用上K哈夫曼树,实际上就是每次合并K堆

合并到最后不足K堆怎么办?

每一次合并会减少K - 1堆,所以只要n - 1是k - 1的倍数就可以了,用0补齐

题目还要求最大深度最小,权值相同时深度小的优先即可

#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct node{LL w,d;};
inline bool operator <(const node& a,const node& b){
return a.w == b.w ? a.d > b.d : a.w > b.w;
}
priority_queue<node> q;
int n,k;
int main(){
n = read(); k = read();
REP(i,n) q.push((node){read(),0});
while ((n - 1) % (k - 1) != 0) q.push((node){0,0}),n++;
LL ans = 0,sum,d;
while (n > 1){
sum = 0; d = 0;
for (int i = 1; i <= k; i++) sum += q.top().w,d = max(d,q.top().d),q.pop();
ans += sum;
q.push((node){sum,d + 1});
n -= k - 1;
}
printf("%lld\n%lld\n",ans,q.top().d);
return 0;
}

NOI2015 荷马史诗 【k-哈夫曼树】的更多相关文章

  1. bzoj 4198: [Noi2015]荷马史诗【哈夫曼树+贪心】

    和合并果子类似(但是是第一次听说哈夫曼树这种东西) 做法也类似,就是因为不用知道树的形态,所以贪心的把最小的k个点合为一个节点,然后依次向上累加即可,具体做法同合并果子(但是使用优先队列 注意这里可能 ...

  2. 洛谷P2168 [NOI2015] 荷马史诗 (哈夫曼树)

    学了哈夫曼树这道题还是好想的,基本上和构造哈夫曼树的思路一样,但是题目要求最长si的最小值,所以用两个关键字的堆,第一关键字是把出现次数作为权值,第二关键字表示从该节点开始的最长长度,权值相同时,选择 ...

  3. 2021.08.05 P2168 荷马史诗(哈夫曼树模板)

    2021.08.05 P2168 荷马史诗(哈夫曼树模板) [P2168 NOI2015] 荷马史诗 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.k叉哈夫曼树如果子结 ...

  4. AcWing:149. 荷马史诗(哈夫曼编码 + k叉哈夫曼树)

    追逐影子的人,自己就是影子. ——荷马 达达最近迷上了文学. 她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马史诗>. 但是由<奥德赛>和<伊 ...

  5. P2168 [NOI2015]荷马史诗 k叉哈夫曼树

    思路:哈夫曼编码 提交:1次(参考题解) 题解:类似合并果子$QwQ$ 取出前$k$小(注意如果叶子结点不满的话要补全),合并起来再扔回堆里去. #include<cstdio> #inc ...

  6. [BZOJ4198][Noi2015]荷马史诗

    4198: [Noi2015]荷马史诗 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 700  Solved: 365[Submit][Status] ...

  7. BZOJ_4198_[Noi2015]荷马史诗_huffman实现

    BZOJ_4198_[Noi2015]荷马史诗_huffman实现 题意: Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马史诗> ...

  8. 【BZOJ4198】【NOI2015】荷马史诗(贪心,Huffman树)

    [BZOJ4198][NOI2015]荷马史诗(贪心,Huffman树) 题面 BZOJ 洛谷 题解 合并果子都是不知道多久以前做过的了.现在才知道原来本质就是一棵哈夫曼树啊. 这题我们仔细研究一下题 ...

  9. 【BZOJ4198】[Noi2015]荷马史诗 贪心+堆

    [BZOJ4198][Noi2015]荷马史诗 Description 追逐影子的人,自己就是影子. ——荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅 ...

随机推荐

  1. VC操作WORD文档总结

    一.写在开头 最近研究word文档的解析技术,我本身是VC的忠实用户,看到C#里面操作WORD这么舒服,同时也看到单位有一些需求,就想尝试一下,结果没想到里面的技术点真不少,同时网络上的共享资料很多, ...

  2. 解决android studio设置版本号

    获取版本号代码 /** * 获取版本号 * @return 当前应用的版本号 */ public static String getVersion(Context context) { try { P ...

  3. (转)SpringMVC学习(五)——SpringMVC的参数绑定

    http://blog.csdn.net/yerenyuan_pku/article/details/72511611 SpringMVC中的参数绑定还是蛮重要的,所以单独开一篇文章来讲解.本文所有案 ...

  4. Robot Framework(十三) 执行测试用例——创建输出

    3.5创建输出 执行测试时会创建几个输出文件,并且所有这些文件都与测试结果有某种关联.本节讨论创建的输出,如何配置它们的创建位置以及如何微调其内容. 3.5.1不同的输出文件 输出目录 输出文件 日志 ...

  5. video 的使用

    video ui给了默认的暂停图片 利用video自身的属性很难达到效果  这里自己写了个 简单记录下 <div class="cg-container video-img" ...

  6. python之路——目录

    目录 python基础部分 基础部分 介绍.基本语法.流程控制 列表 元祖 字符串 字典 集合 文件操作 函数 变量 递归 迭代器,生成器,装饰器,Json和pickle 数据序列化 函数 初识函数 ...

  7. Python基础篇 -- 列表

    3.2 列表的增删改查 ​ 列表使用 [] 来表示,列表中每个元素与元素之间用逗号隔开 ​ 列表也有索引和切片 # 切片切出来的也是列表 lst = ["梅西", "内马 ...

  8. 洛谷 P1663 山

    https://www.luogu.org/problemnew/show/P1663 可能在这里看会好一点:[题解]

  9. (57)zabbix Slide shows幻灯片展示

    定义好screen之后,我们想了解服务器状况之时,一般会一个个screen点过去,zabbix提供了幻灯片展示方法,可以定义多个Slide,一个slide中可以包含多个screen. 创建slide ...

  10. 什么是php?php的优缺点有哪些?与其它编程语言的优缺点?

    身为一个PHP开发者,有必要了解一下PHP的缺点,知道每种语言的优点和缺点,才能知道某种语言在什么场景下适合使用,在什么场景下不适合使用. 这个问题我曾经面试的时候遇到过,我之前没总结过,第一问大部分 ...