vijos 1053 Easy sssp
描述
输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图.
要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一个点沿着某条路径出发, 又回到了自己, 而且所经过的边上的权和小于0, 就说这条路是一个负权回路.
如果存在负权回路, 只输出一行-1;
如果不存在负权回路, 再求出一个点S(1 <= S <= N)到每个点的最短路的长度. 约定: S到S的距离为0, 如果S与这个点不连通, 则输出NoPath.
格式
输入格式
第一行: 点数N(2 <= N <= 1,000), 边数M(M <= 100,000), 源点S(1 <= S <= N);
以下M行, 每行三个整数a, b, c表示点a, b(1 <= a, b <= N)之间连有一条边, 权值为c(-1,000,000 <= c <= 1,000,000)
输出格式
如果存在负权环, 只输出一行-1, 否则按以下格式输出
共N行, 第i行描述S点到点i的最短路:
如果S与i不连通, 输出NoPath;
如果i = S, 输出0;
其他情况输出S到i的最短路的长度.
样例1
样例输入1
6 8 1
1 3 4
1 2 6
3 4 -7
6 4 2
2 4 5
3 6 3
4 5 1
3 5 4
样例输出1
0
6
4
-3
-2
7
限制
Test5 5秒
其余 1秒
提示
做这道题时, 你不必为超时担心, 不必为不会算法担心, 但是如此“简单”的题目, 你究竟能ac么?
通过率超低一道题,
但学过bellman-ford 应该很容易。
本蒟蒻用的是spfa
#include <ctype.h>
#include <cstring>
#include <cstdio>
#include <queue>
#define N 10005
#define M 100005 using namespace std;
queue<int>q; void read(int &x)
{
x=;
bool f=;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=;ch=getchar();}
while(isdigit(ch)) {x=x*+ch-'';ch=getchar();}
x=f?(~x)+:x;
}
struct node
{
int u,v,w;
node (int u=,int v=,int w=) :u(u),v(v),w(w){}
}edge[M<<];
bool vis[N],flag=false;;
int di,cnt,head[N],fw,out[N],n,m,s,dis[N];
void add(int u,int v,int w)
{
edge[++cnt]=node(head[u],v,w);
head[u]=cnt;
}
void spfa1(int pre)
{
if(flag) return ;
vis[pre]=;
for(int i=head[pre];i;i=edge[i].u)
{
int to=edge[i].v;
if(dis[to]>dis[pre]+edge[i].w)
{
if(vis[to]||flag)
{
flag=;
break ;
}
dis[to]=dis[pre]+edge[i].w;
spfa1(to);
}
}
vis[pre]=;
}
bool pd()
{
for(int i=;i<=n;i++)
{
spfa1(i);
if(flag) return true;
}
return false;
}
void spfa(int s)
{
for(int i=;i<=n;i++) dis[i]=0x7fffffff;
dis[s]=;
q.push(s);
while(!q.empty())
{
int Top=q.front();
q.pop();
vis[Top]=;
for(int i=head[Top];i;i=edge[i].u)
{
int v=edge[i].v;
if(dis[v]>dis[Top]+edge[i].w)
{
dis[v]=dis[Top]+edge[i].w;
if(!vis[v])
{
vis[v]=;
q.push(v);
}
}
}
}
}
int main()
{
read(n);
read(m);
read(s);
for(int a,b,c;m--;)
{
read(a);
read(b);
read(c);
add(a,b,c);
}
if(pd())
printf("-1");
else
{
spfa(s);
for(int i=;i<=n;i++)
{
if(dis[i]==0x7fffffff) printf("NoPath\n");
else printf("%d\n",dis[i]);
}
}
return ;
}
vijos 1053 Easy sssp的更多相关文章
- Vijos——T1053 Easy sssp
https://vijos.org/p/1053 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程 ...
- Easy sssp(spfa)(负环)
vijos 1053 Easy sssp 方法:用spfa判断是否存在负环 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,00 ...
- vijosP1053 Easy sssp
vijosP1053 Easy sssp 链接:https://vijos.org/p/1053 [思路] SPFA. 题目中的陷阱比较多,但是只要中规中矩的写SPFA诸如:s与负圈不相连,有重边的情 ...
- Easy sssp
Easy sssp 时间限制: 1 Sec 内存限制: 128 MB提交: 103 解决: 20[提交][状态][讨论版] 题目描述 输入数据给出一个有N(2 < = N < = ...
- Easy sssp(vijos 1053)
描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...
- SPFA_YZOI 1662: Easy sssp
题目描述 输入数据给出一个有N(2 < = N < = 1,000)个节点,M(M < = 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是 ...
- bnuoj 1053 EASY Problem (计算几何)
http://www.bnuoj.com/bnuoj/problem_show.php?pid=1053 [题意]:基本上就是求直线与圆的交点坐标 [题解]:这种题我都比较喜欢用二分,三分做,果然可以 ...
- Vijos1053 Easy sssp[spfa 负环]
描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...
- Loj10086 Easy SSSP
试题描述 输入数据给出一个有 N 个节点,M 条边的带权有向图.要求你写一个程序,判断这个有向图中是否存在负权回路.如果从一个点沿着某条路径出发,又回到了自己,而且所经过的边上的权和小于 0,就说 ...
随机推荐
- golang defer使用——资源关闭时候多用
defer Go语言中有种不错的设计,即延迟(defer)语句,你可以在函数中添加多个defer语句.当函数执行到最后时,这些defer语句会按照逆序执行,最后该函数返回.特别是当你在进行一些打开资源 ...
- Laravel 新增的Switch模板控制语句非常不错
切换语句switch语句可以使用来构建,,,和指令:@switch@case@break@default@endswitch @switch($i) @case(1) First case... @b ...
- apple-touch-startup-image 制作iphone web应用程序的启动画面
为ipad制作web应用程序的启动画面时发现个问题,只能显示竖屏图,横屏图出不来,如下: 首先页面头部里要加入(这个是APP启动画面图片,如果不设置,启动画面就是白屏,图片像素就是手机全屏的像素) & ...
- Centos7 编译安装 Nginx、MariaDB、PHP
前言 本文主要大致介绍CentOS 7下编译安装Nginx.MariaDB.PHP.面向有Linux基础且爱好钻研的朋友.技艺不精,疏漏再所难免,还望指正. 环境简介: 系统: CentOS 7,最小 ...
- 2016 Multi-University Training Contest 1 GCD【RMQ+二分】
因为那时候没怎么补所以就分到了未搞分组里!!!然后因为标题如此之屌吧= =点击量很高,然后写的是无思路,23333,估计看题人真的是觉得博主就是个撒缺.废话不多说了,补题... update////2 ...
- EOS:dfuse stream 保证不会错过一个心跳
强大的 dfuse history API 给我们带来了高效的链数据获取途径,让我们的 dapp 在用户体验上了一个台阶. 官方示例 不会错过一个心跳 代码分析 函数 pendingActions 待 ...
- 手机测试用例-STK测试用例
ID 功能描述 操作步骤 预期结果 test time P/F comment tester test time P/F comment tester STK服务 SIM卡适应性测试 1.选取支持ST ...
- 二分图最大匹配初探 By cellur925
一.什么是二分图 首先它需要是一张无向图. 之后它需要同时满足两个条件:①它的N个点被分为两个集合,且这两个集合交集为空:②同一集合内的点之间没有边相连. 二.无向图是否为二分图的判定 引理:无向图是 ...
- Oracle 单引号与双引号的区别
双引号一般是用来转义的,如果alias里面有空格或其它保留符号,必须使用双引号.而单引号是用来特制的,比如字符串的引用,日期字符串的引用,都必须包括在单引号中,可以参与运算或其它表达式中.两者不可混用 ...
- Hibernate的一级缓存:快照区
参考来源:http://blog.sina.com.cn/s/blog_981ee5d80102w85f.html