Sumdiv
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 16466   Accepted: 4101

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8. 
The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 
15 modulo 9901 is 15 (that should be output). 

要求的是A^B的所有因子的和之后再mod 9901的值。

(1+a1+a1^2+...a1^n1)*(1+a2+a2^2+...a2^n2)*(1+a3+a3^2+...a3^n2)*...(1+am+am^2+...am^nm) mod 9901。

对于每一个(1+a1+a1^2+...a1^n1) mod 9901

等于 (a1^(n1+1)-1)/(a1-1) mod 9901,这里用到逆元的知识:a/b mod c = (a mod (b*c))/ b

所以就等于(a1^(n1+1)-1)mod (9901*(a1-1)) / (a1-1)。

至于前面的a1^(n1+1),快速幂。

 #include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
#define mod 9901
#define N 10007
#define ll long long
using namespace std; int prime[]; void getPrime()
{
for(int i=;i<=;i++)
{
if(!prime[i])prime[++prime[]]=i;
for(int j=;j<=prime[]&&prime[j]*i<=;j++)
{
prime[prime[j]*i]=;
if(i%prime[j]==) break;
}
}
} long long factor[][];
int fatCnt;
int getFactors(long long x)
{
fatCnt=;
long long tmp=x;
for(int i=;prime[i]<=tmp/prime[i];i++)
{
factor[fatCnt][]=;
if(tmp%prime[i]==)
{
factor[fatCnt][]=prime[i];
while(tmp%prime[i]==)
{
factor[fatCnt][]++;
tmp/=prime[i];
}
fatCnt++;
}
}
if(tmp!=)
{
factor[fatCnt][]=tmp;
factor[fatCnt++][]=;
}
return fatCnt;
}
long long pow_m(long long a,long long n)//快速模幂运算
{
ll ans=;a%=mod;
while(n)
{
if (n&) ans=(ans*a)%mod;
n>>=;
a=(a*a)%mod;
}
return ans;
}
long long sum(long long p,long long n)//计算1+p+p^2+````+p^n
{
if(p==)return ;
if(n==)return ;
if(n&) return ((+pow_m(p,n/+))%mod*sum(p,n/)%mod)%mod;
else return ((+pow_m(p,n/+))%mod*sum(p,n/-)+pow_m(p,n/)%mod)%mod; }
int main()
{
int A,B;
getPrime();
while(~scanf("%d%d",&A,&B))
{
getFactors(A);
long long ans=;
for(int i=;i<fatCnt;i++)
ans=(ans*sum(factor[i][],B*factor[i][])%mod)%mod;
printf("%lld\n",ans);
}
}

poj1845 数论 快速幂的更多相关文章

  1. ACM数论-快速幂

    ACM数论——快速幂 快速幂定义: 顾名思义,快速幂就是快速算底数的n次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高. 原理: 以下以求a的b次方来介绍: 把b转换成 ...

  2. BZOJ3561 DZY Loves Math VI 数论 快速幂 莫比乌斯反演

    原文链接http://www.cnblogs.com/zhouzhendong/p/8116330.html UPD(2018-03-26):回来重新学数论啦.之前的博客版面放在更新之后的后面. 题目 ...

  3. BZOJ-1008 越狱 数论快速幂

    1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 6192 Solved: 2636 [Submit][Status] ...

  4. hdu-5698 瞬间移动(数论+快速幂)

    题目链接: 瞬间移动 Problem Description   有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝 ...

  5. 【bzoj2242】: [SDOI2011]计算器 数论-快速幂-扩展欧几里得-BSGS

    [bzoj2242]: [SDOI2011]计算器 1.快速幂 2.扩展欧几里得(费马小定理) 3.BSGS /* http://www.cnblogs.com/karl07/ */ #include ...

  6. HDU 5451 Best Solver 数论 快速幂 2015沈阳icpc

    Best Solver Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)Tota ...

  7. POJ 3641 Pseudoprime numbers (数论+快速幂)

    题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...

  8. BZOJ3560 DZY Loves Math V 数论 快速幂

    原文链接http://www.cnblogs.com/zhouzhendong/p/8111725.html UPD(2018-03-26):蒟蒻回来重新学数论了.更新了题解和代码.之前的怼到后面去了 ...

  9. 【bzoj2751】[HAOI2012]容易题(easy) 数论-快速幂

    [bzoj2751][HAOI2012]容易题(easy) 先考虑k=0的情况 那么第一个元素可能为[1,n] 如果序列长度为m-1时的答案是ans[m-1] 那么合并得 然后同理答案就是 k很小 而 ...

随机推荐

  1. Hanlder + 弱引用防内存漏泄示例*

    Hanlder + 弱引用防内存漏泄示例: public class MainActivity extends AppCompatActivity { public final MyHandler h ...

  2. Oracle报错:“ORA-18008: 无法找到 OUTLN 方案 ”的解决方案

    Oracle报错:“ORA-18008: 无法找到 OUTLN 方案 ”的解决方案   2.修改replication_dependency_tracking参数 SQL> alter syst ...

  3. 对于JS == 运算的一些理解

    声明:本文是摘自一篇文章,放在这只为做为一个笔记能更好学习. 大家知道,==是JavaScript中比较复杂的一个运算符.它的运算规则奇怪,容易让人犯错,从而成为JavaScript中“最糟糕的特性” ...

  4. Java核心技术梳理-异常处理

    一.引言 异常总是不可避免的,就算我们自身的代码足够优秀,但却不能保证用户都按照我们想法进行输入,就算用户按照我们的想法进行输入,我们也不能保证操作系统稳定,另外还有网络环境等,不可控因素太多,异常也 ...

  5. [BZOJ1009][HNOI2008]GT考试 DP+矩阵快速幂+KMP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1009 我们令$dp(i,j)$表示已经填了$i$位,而且后缀与不幸运数字匹配了$j$位,那 ...

  6. R in action读书笔记(11)-第八章:回归-- 选择“最佳”的回归模型

    8.6 选择“最佳”的回归模型 8.6.1 模型比较 用基础安装中的anova()函数可以比较两个嵌套模型的拟合优度.所谓嵌套模型,即它的一 些项完全包含在另一个模型中 用anova()函数比较 &g ...

  7. 未来IT行业的掌控者

    (题外话,我发现很多高手都喜欢讲代码实现,喜欢贴代码贴图,我个人不大喜欢这种方式,我觉得最重要的是思想,是想法,具体的实现代码实现步骤由读者自己去实现.这纯属我个人喜好,望各大内高手勿喷,可能是本人水 ...

  8. jQuery 超过字符截取部分用星号表示

    $(function(){ var str = $('#num').text(); if (str.length >15) { var strend = str.substring(4,str. ...

  9. vs code 格式化 美化 html js css 插件 Beautify

    安装 Beautify 插件 然后 F1 输入 Beautify file 回车即可

  10. web.xml的简单解释以及Hello1中web.xml的简单分析

    一.web.xml的加载过程 ①当我们启动一个WEB项目容器时,容器包括(JBoss,Tomcat等).首先会去读取web.xml配置文件里的配置,当这一步骤没有出错并且完成之后,项目才能正常的被启动 ...