[bzoj1485][HNOI2009]有趣的数列_卡特兰数_组合数
有趣的数列 bzoj-1485 HNOI-2009
题目大意:求所有1~2n的排列满足奇数项递增,偶数项递增。相邻奇数项大于偶数项的序列个数%P。
注释:$1\le n\le 10^6$,$1\le P \le 10^9$。
想法:好题啊。
我们依次考虑1~2n,就是把当前$i$放进奇数项还是偶数项的问题。因为我们有相邻奇数项大于偶数项的问题。所以当前放进奇数项的个数不能多于放进偶数项的个数。
进而我们将放进奇数项比作进栈,放进偶数项比作出栈。
答案就相当于$n$的出栈入栈序的个数。
等于$Catalan_n$。
利用卡特兰数的通项公式:$Catalan_n=\frac{C_{2n}^{n}}{(n+1)}$。
$=\frac{(2n)!}{n!(n+1)!}$。
用枚举质因子的方式求每个质因子的贡献即可。
Code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod;
bool vis[2000010];
int prime[2000010],cnt;
ll qmul(ll x,ll y)
{
ll ans=0; x%=mod,y%=mod; while(y)
{
if(y&1) (ans+=x)%=mod;
y>>=1;
(x+=x)%=mod;
}
return ans;
}
ll qpow(ll x,ll y)
{
ll ans=1; x%=mod; while(y)
{
if(y&1) (ans*=x)%=mod;
y>>=1;
(x*=x)%=mod;
}
return ans;
}
void init()
{
for(int i=2;i<=2000000;i++)
{
if(!vis[i]) prime[++cnt]=i;
for(int j=1;j<=cnt&&1ll*i*prime[j]<=2000000;j++)
{
vis[i*prime[j]]=true;
if(i%prime[j]==0) break;
}
}
}
ll num(ll x,ll p)
{
ll re=0; while(x)
{
re+=(x/p); x/=p;
}
return re;
}
int main()
{
init();
ll n; cin >> n >> mod ;
ll ans=1;
for(int i=1;i<=cnt&&prime[i]<=n*2;i++)
{
ans=qmul(ans,qpow(prime[i],num(2*n,prime[i])-num(n,prime[i])-num(n+1,prime[i])));
}
cout << ans << endl ;
return 0;
}
小结:好题啊。关于模型的转化总是非常重要且巧妙的。
[bzoj1485][HNOI2009]有趣的数列_卡特兰数_组合数的更多相关文章
- [luogu1485 HNOI2009] 有趣的数列 (组合数学 卡特兰数)
传送门 Solution 卡特兰数 排队问题的简单变化 答案为\(C_{2n}^n \pmod p\) 由于没有逆元,只好用分解质因数,易证可以整除 Code //By Menteur_Hxy #in ...
- bzoj1485: [HNOI2009]有趣的数列(Catalan数)
一眼卡特兰数...写完才发现不对劲,样例怎么输出$0$...原来模数不一定是质数= =... 第一次见到模数不是质数的求组合数方法$(n,m\leq 10^7)$,记录一下... 先对于$1$~$n$ ...
- 【题解】洛谷P3200 [HNOI2009] 有趣的数列(卡特兰数+质因数分解)
洛谷P3200:https://www.luogu.org/problemnew/show/P3200 思路 这题明显是卡特兰数的题型咯 一看精度有点大 如果递推卡特兰数公式要到O(n2) 可以证明得 ...
- 「BZOJ1485」[HNOI2009] 有趣的数列 (卡特兰数列)
「BZOJ1485」[HNOI2009] 有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai ...
- bzoj1485: [HNOI2009]有趣的数列(Catalan数)
1485: [HNOI2009]有趣的数列 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2105 Solved: 1117[Submit][Stat ...
- 洛谷P3200 [HNOI2009]有趣的数列(Catalan数)
P3200 [HNOI2009]有趣的数列 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足 ...
- 【卡特兰数】BZOJ1485: [HNOI2009]有趣的数列
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)
题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...
随机推荐
- hihocoder offer收割编程练习赛12 B 一面砖墙
思路: 就是求哪个长度出现的次数最多. 实现: #include <iostream> #include <cstdio> #include <algorithm> ...
- [BZOJ1088][SCOI2005]扫雷Mine DP
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1088 记录下每一个格子对应左边格子放的雷的情况,然后dp转移就好了. #include&l ...
- ReactJS-1-基本使用
JSX使用 一.为什么使用JSX?React的核心机制之一就是虚拟DOM:可以在内存中创建的虚拟DOM元素.但是用js创建虚拟dom可读性差,于是创建了JSX,继续使用HTML代码创建dom,增加可读 ...
- "CSRF token missing or incorrect."的解决方法.
现象: Forbidden (403)CSRF verification failed. Request aborted.HelpReason given for failure:CSRF token ...
- [转] 以超级管理员身份运行bat
(转自:以超级管理员身份运行bat - lishirong 原文日期:2013.07.04) 废话不多说,直接上代码: -------------------------------------- ...
- python学习日记-01
一. 熟悉 在正式介绍python之前,了解下面两个基本操作对后面的学习是有好处的: (1)基本的输入输出 可以在Python中使用+.-.*./直接进行四则运算. >>> 1+3* ...
- Android(java)学习笔记194:ContentProvider使用之获得系统联系人信息02(掌握)
1.重要: 系统删除一个联系人,默认情况下并不是把这个联系人直接删除掉了,只是做了一个标记,标记为被删除. 2.前面一讲说过了如何获取系统联系人信息(通过ContentProvider),获取联系人信 ...
- idea 常用操作
1.创建的maven项目,java文件不提示错误:有main方法但右击却找不到run选项的问题 1)首先要配置SDK--就是配置JDK 2)然后要按照提示信息导入某些maven相关的东西,就这个Eve ...
- SolidWorks的文件类型
零件模板 *.prtdot装配体模板 *.asmdot工程图模板 *.drwdot颜色文件 *.sldclr曲线文件 *.sldcrv复制设定向导文件 *.sldreg零件文件:prt sldprtF ...
- RabbitMQ之项目中实战
说了那么多,还不是为了在项目中进行实战吗,在实践中检验真理,不然我学他干嘛,不能解决项目中的实际问题的技术都是耍流氓... 一.后台管理系统发送消息 瞎咧咧:后台管理系统发送消息到交换机中,然后通知其 ...