D-query

Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query is a pair (i, j) (1 ≤ i ≤ j ≤ n). For each d-query (i, j), you have to return the number of distinct elements in the subsequence ai, ai+1, ..., aj.

Input

  • Line 1: n (1 ≤ n ≤ 30000).
  • Line 2: n numbers a1, a2, ..., an (1 ≤ ai ≤ 106).
  • Line 3: q (1 ≤ q ≤ 200000), the number of d-queries.
  • In the next q lines, each line contains 2 numbers i, j representing a d-query (1 ≤ i ≤ j ≤ n).

Output

  • For each d-query (i, j), print the number of distinct elements in the subsequence ai, ai+1, ..., aj in a single line.

Example

Input
5
1 1 2 1 3
3
1 5
2 4
3 5 Output
3
2
3 题意:求区间内不重复的数的个数。 n,m<=100000
题解:建立可持久化线段树,以右端点为最后建立现在版本线段树,
   然后就是维护每一棵线段树,就是前面的点什么时候失效,询问大区间就一定会包含小区间中的
   相同权值的点,然后只需要记录和即可,离散化还是需要的+二分。
 #include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstdio> #define N 60007
#define M 20000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch>''||ch<''){if (ch=='-') f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,top,sz,q;
int a[N],b[N],num[N],pos[N],root[N];
int ls[M],rs[M],sum[M]; int bs(int num)
{
int l=,r=top;
while(l<=r)
{
int mid=(l+r)>>;
if (b[mid]==num) return mid;
if (b[mid]<num) l=mid+;
else r=mid-;
}
}
void change(int l,int r,int x,int &y,int wei,int z)
{
y=++sz;
if (l==r)
{
sum[y]=sum[x]+z;
return;
}
ls[y]=ls[x],rs[y]=rs[x],sum[y]=sum[x]+z;
int mid=(l+r)>>;
if (wei<=mid) change(l,mid,ls[x],ls[y],wei,z);
else change(mid+,r,rs[x],rs[y],wei,z);
} int query(int p,int l,int r,int x,int y)
{
if (l==x&&y==r) return sum[p];
int mid=(l+r)>>;
if (y<=mid) return query(ls[p],l,mid,x,y);
else if (x>mid) return query(rs[p],mid+,r,x,y);
else return query(ls[p],l,mid,x,mid)+query(rs[p],mid+,r,mid+,y);
}
int main()
{
int n=read();
for (int i=;i<=n;i++)
a[i]=read(),b[i]=a[i];
sort(b+,b+n+);
top=;
for (int i=;i<=n;i++)
if (b[i]!=b[i-]) b[++top]=b[i];
for (int i=;i<=n;i++)
{
int num=bs(a[i]);
change(,n,root[i-],root[i],i,);
if (pos[num]) change(,n,root[i],root[i],pos[num],-);
pos[num]=i;
}
q=read();
while(q--)
{
int l=read(),r=read();
printf("%d\n",query(root[r],,n,l,r));
}
}
 

SPOJ 3267 D-query (可持久化线段树,区间重复元素个数)的更多相关文章

  1. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  2. 【bzoj2653】middle 可持久化线段树区间合并

    题目描述 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[ ...

  3. hdu4348 - To the moon 可持久化线段树 区间修改 离线处理

    法一:暴力! 让干什么就干什么,那么久需要可持久化线段树了. 但是空间好紧.怎么破? 不down标记好了! 每个点维护sum和add两个信息,sum是这段真实的和,add是这段整体加了多少,如果这段区 ...

  4. 可持久化线段树——区间更新hdu4348

    和线段树类似,每个结点也要打lazy标记 但是lazy标记和线段树不一样 具体区别在于可持久化后lazy-tag不用往下传递,而是固定在这个区间并不断累加,变成了这个区间固有的性质(有点像分块的标记了 ...

  5. SPOJ D-query && HDU 3333 Turing Tree (线段树 && 区间不相同数个数or和 && 离线处理)

    题意 : 给出一段n个数的序列,接下来给出m个询问,询问的内容SPOJ是(L, R)这个区间内不同的数的个数,HDU是不同数的和 分析 : 一个经典的问题,思路是将所有问询区间存起来,然后按右端点排序 ...

  6. HDU 4348.To the moon SPOJ - TTM To the moon -可持久化线段树(带修改在线区间更新(增减)、区间求和、查询历史版本、回退到历史版本、延时标记不下放(空间优化))

    To the moon Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  7. BZOJ5371[Pkusc2018]星际穿越——可持久化线段树+DP

    题目描述 有n个星球,它们的编号是1到n,它们坐落在同一个星系内,这个星系可以抽象为一条数轴,每个星球都是数轴上的一个点, 特别地,编号为i的星球的坐标是i. 一开始,由于科技上的原因,这n个星球的居 ...

  8. bzoj 3524 可持久化线段树

    我们可以先离散化,然后建立权值的可持久化线段树,记录每个数出现的次数,对于区间询问直接判断左右儿子的cnt是不是大于(r-k+1)/2,然后递归到最后一层要是还是大于就有,否则不存在. 反思:挺简单一 ...

  9. SPOJ Meteors - 可持久化线段树 - 二分法

    Byteotian Interstellar Union (BIU) has recently discovered a new planet in a nearby galaxy. The plan ...

随机推荐

  1. ie浏览器和火狐浏览器对对容器宽度定义的差异

    首先我们说说firefox和IE对CSS的宽度显示有什么不同: 其实CSS ’width’ 指的是标准CSS中所指的width的宽度,在firefox中的宽度就是这个宽度.它只包含容器中内容的宽度.而 ...

  2. [BZOJ1009][HNOI2008]GT考试 DP+矩阵快速幂+KMP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1009 我们令$dp(i,j)$表示已经填了$i$位,而且后缀与不幸运数字匹配了$j$位,那 ...

  3. [转]Sublime Text操作

    原文地址:http://www.madongdong.me/sublime-text3%E4%BD%BF%E7%94%A8%E6%8C%87%E5%8D%97/ 作者:马东东 前言(Prologue) ...

  4. Android 更新方案实现

    需求说明 为了保证自己 APP 的新版本使用率,现在有很多已有的“软件更新”框架供各位使用,本文的主要内容是如何自己动手来实现软件的后台下载,更新. 下面详细说明下软件更新的逻辑,流程图如下: 每步详 ...

  5. JavaScript——blob、file、flieReader、createObjectURL

    https://blog.csdn.net/opengl_es/article/details/44336477 https://www.cnblogs.com/hhhyaaon/p/5928152. ...

  6. 迅为i.MX6UL核心板ARMCortex-A7单核NXP飞思卡尔工控行业Imx6核心板

    iMX6UL核心板小巧精致,尺寸仅38mm*42mm:CPU型号iMX6UL@ 528MHz ARM Cortex-A7架构 :内存:512M DDR :存储:8G EMMC,低功耗,性能强大,性价比 ...

  7. (转)淘淘商城系列——MyBatis分页插件(PageHelper)的使用以及商品列表展示

    http://blog.csdn.net/yerenyuan_pku/article/details/72774381 上文我们实现了展示后台页面的功能,而本文我们实现的主要功能是展示商品列表,大家要 ...

  8. 软件开发:速度 vs 质量

    程序开发项目进行过程中,通常会冒出这样的困惑:应该选择速度,还是选择质量?很多程序猿都会有偷懒的思维,觉得把一些摸不清头绪.不知道怎么写的代码片段去掉,可以节省很多时间,更早完成项目计划. 其实过去几 ...

  9. BEGIN - 开始一个事务块

    SYNOPSIS BEGIN [ WORK | TRANSACTION ] DESCRIPTION 描述 BEGIN 初始化一个事务块, 也就是说所有 BEGIN 命令后的用户语句都将在一个事务里面执 ...

  10. css 最高权重 !important;

    border-top: 1px solid #ccc !important;