在线性拟合的基础上,我们实现logistic regression。

如前所述,样本集是

{x1,y1},{x2,y2},...,{xn,yn}[1]

其中,xi=[1,xi,1,xi,2,xi,3,...,xi,k]T,且yi∈(0,1)。注意,这里对yi有值上的要求,必须如此,如果值不再这个区间,要以归一化的方式调整到这个区间。对于分类问题,则yi的取值或者是0,或者是1,也就是yi∈{0,1}。

当然,从严格的意义上说,logistic regression拟合后,yi的值只能无限地逼近0和1,而不能真正达到0和1,但在处理实际问题上,可以设定成形如 ifyi>0.5thenyi=1和ifyi<=0.5thenyi=0解决。

Logistic regression的拟合形式如下:

yi=f(zi)[2]
zi=Wxi[3]

其中,f(z)=11+e−z[4],也就是Logistic函数。

根据公式[2]和公式[3],则:

yi=f(Wxi)[4]

那么,如果用公式[4]拟合xi和yi的关系,需要求解W,使得在公式[1]上误差最小。对应的损失函数就是

Loss=12∑i=1n(yi−f(Wxi))2[5]

跟前面的一样,我们用梯度下降法求解。 
所以,要对公式[5]求wj的一阶偏导,于是有

∂Loss∂wj=∑i=1n(yi−f(Wxi))×(−1)×∂f(Wxi)∂wj=∑i=1n(yi−f(Wxi))×(−1)×∂f(zi)∂zi×∂zi∂wj[6]

注意,问题来了,公式[6]的最后一步,实际上是将Wxi视为一个变量zi,分别求导。这一步是在高等数学有详细描述了,不解释。

公式[6]中的∂f(zi)∂zi等价于f′(z),因为只有一个自变量z。根据公式[4],可以求出

f′(z)=ez(ez+1)2[7]

对公式[7]可以做一次变形,以方便求解: 
根据公式[4],可以知道

ez=f(z)1−f(z)[8]

将公式[8]代入到公式[7],就可以得到

f′(z)=f(z)×(1−f(z))[9]

也就是说,我们可以根据f(z)得到f′(z),而且计算量很小。

把公式[9]代入公式[6],就得到

∂Loss∂wj=∑i=1n(yi−f(Wxi))×(−1)×∂f(zi)∂zi×∂zi∂wj=∑i=1n(yi−f(Wxi))×(−1)×f(zi)×(1−f(zi))×∂zi∂wj=∑i=1n(yi−f(Wxi))×(−1)×f(Wxi)×(1−f(Wxi))×∂(Wxi)∂wj=∑i=1n(yi−f(Wxi))×(−1)×f(Wxi)×(1−f(Wxi))×∂(Wxi)∂wj=∑i=1n(yi−f(Wxi))×(−1)×f(Wxi)×(1−f(Wxi))×xi,j=∑i=1n(yi−f(Wxi))×f(Wxi)×(f(Wxi)−1)×xi,j[10]

于是公式[10]可以写成

∂Loss∂wj=∑i=1n(yi−f(Wxi))f(Wxi)(f(Wxi)−1)xi,j[11]

那么,wj在梯度下降法的迭代公式就是

wj=wj+△wj=wj−∂Loss∂wj[12]

现在,我们开始做最麻烦的一步,将公式[11]进行矩阵化 

Y=[y1,y2,...,yn][13]
W=[w0,w1,w2,...,wk][14]
X=⎛⎝⎜⎜⎜⎜11...1x1,1x2,1...xn,1x1,2x2,2...xn,2............x1,kx2,k...xn,k⎞⎠⎟⎟⎟⎟[15]
V=⎛⎝⎜⎜⎜⎜f(Wx1)(f(Wx1)−1)0...00f(Wx2)(f(Wx2)−1)...0............00...f(Wxn)(f(Wxn)−1)⎞⎠⎟⎟⎟⎟[16]
L=[f(Wx1),f(Wx2),...,f(Wxn)][17]

公式[16]略有一点复杂,它是对角矩阵。 
根据上述设定,公式[11]的矩阵化形式就是

∂Loss∂wj=(Y−L)V⎛⎝⎜⎜⎜⎜x1,jx2,j...xn,j⎞⎠⎟⎟⎟⎟[18]

那么,对W而言,更新公式就是

W=W−(Y−L)VX[19]

到这里,logisitci regression的梯度下降法推导就结束了。下一篇我们用python实现求解过程。

logistic regression教程3的更多相关文章

  1. logistic regression教程1

    实现线性拟合 我们用python2.7实现上一篇的推导结果.请先安装python matplotlib包和numpy包. 具体代码如下: #!/usr/bin/env python #! -*- co ...

  2. ufldl学习笔记与编程作业:Logistic Regression(逻辑回归)

    ufldl学习笔记与编程作业:Logistic Regression(逻辑回归) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听 ...

  3. [机器学习] Coursera ML笔记 - 逻辑回归(Logistic Regression)

    引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等.主要学习资料来自Standford Andrew N ...

  4. 逻辑回归 Logistic Regression

    逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的 ...

  5. logistic regression与SVM

    Logistic模型和SVM都是用于二分类,现在大概说一下两者的区别 ① 寻找最优超平面的方法不同 形象点说,Logistic模型找的那个超平面,是尽量让所有点都远离它,而SVM寻找的那个超平面,是只 ...

  6. Logistic Regression - Formula Deduction

    Sigmoid Function \[ \sigma(z)=\frac{1}{1+e^{(-z)}} \] feature: axial symmetry: \[ \sigma(z)+ \sigma( ...

  7. SparkMLlib之 logistic regression源码分析

    最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其 ...

  8. [OpenCV] Samples 06: [ML] logistic regression

    logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...

  9. Stanford机器学习笔记-2.Logistic Regression

    Content: 2 Logistic Regression. 2.1 Classification. 2.2 Hypothesis representation. 2.2.1 Interpretin ...

随机推荐

  1. Android 仿 新闻阅读器 菜单弹出效果(附源码DEMO)

    这一系列博文都是:(android高仿系列)今日头条 --新闻阅读器 (一) 开发中碰到问题之后实现的,觉得可能有的开发者用的到或则希望独立成一个小功能DEMO,所以就放出来这么一个DEMO. 原本觉 ...

  2. html5前端杂记

    首先是css的一些知识 毕竟自己懂得不多,但是一看资料.感觉似曾相识 <style> .red-text { color: red; } </style>//这里是css样式的 ...

  3. 【Python-2.7】大小写转换函数

    字母大小写是编程过程中经常遇到的问题,如下函数可以灵活的进行大小写转换: title():把单词首字母转换为大写: upper():把每个字母转换为大写: lower():把每个字母转换为小写. 示例 ...

  4. Greenplum开发

    Greenplum(GP)采用了MPP架构,基于开源的数据库 PostgreSQL(PG). 1.首先什么是MPP架构? GreenPlum的架构采用了MPP(大规模并行处理).在 MPP 系统中,每 ...

  5. [Windows Server 2012] 更改服务器密码

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★[护卫神·V课堂]是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:更改服务器 ...

  6. python学习笔记(4)——list[ ]

    发现个问题,python与C.JAVA等语言相比学习障碍最大差别居然在于版本更迭!这是python官方造的虐啊... 有时针对某问题去google答案,或者自己去博客找共性解答,会出现相互矛盾或者与你 ...

  7. 在CorelDRAW中的自定义彩虹笔刷创建迷幻背景

    在60年代的艺术形式中,迷幻艺术对设计和图形艺术的影响尤为重要.在下面这个CorelDRAW教程中我们主要使用图形纸工具和艺术笔工具创建一个迷幻风格的背景,在这之前我们需要先创建出一个彩虹笔刷. 1. ...

  8. PMP 学习心得

    前两天刚考完 PMP,松了一口气,终于考完了,虽然心里有点慌,不知道自己会不会过.学习 PMP 这三个月还是很充实的.不断的看视频,做题目,功夫不负有心人,也算是学到了一些东西.至少知道了一个项目的启 ...

  9. BigDecimal运算

    BigDecimal由任意精度整数未缩放值和32位整数级别组成 . 如果为零或正数,则刻度是小数点右侧的位数. 如果是负数,则数字的非标定值乘以10,以达到等级的否定的幂. 因此,BigDecimal ...

  10. Github Pages另一个选择:GitCafe-Pages

    今天找资料时,瞥到了GitCafe-Pages字样,记得前些日子就看到过GitCafe,知道这个是国内的类似Github的代码托管平台,所以一看字样就明白了这个是与Github Pages一样的东东. ...