POJ-3268-最短路(dijkstra算法)
Silver Cow Party
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 12494 | Accepted: 5568 |
Description
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤X ≤
N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; roadi requires
Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
M, and X
Lines 2..M+1: Line i+1 describes road i with three space-separated integers:Ai,
Bi, and Ti. The described road runs from farmAi to farm
Bi, requiring Ti time units to traverse.
Output
Sample Input
4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3
Sample Output
10
Hint
Source
field=source&key=USACO+2007+February+Silver">USACO 2007 February Silver
题目的意思是:从出发点到达目的地X。再从X返回到出发点的最短路径中的最大值(由于出发点没有固定,也就是能够:1->X->1, 2->X->2等)。
所以我们要枚举全部的可能性。找出当中的最大值。
巧妙地运用dijkstra算法,双向求出两次X->m的最短路径长然后相加即得到了m->X->m的最短路径。代码例如以下:
#include<queue>
#include<vector>
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
struct Edge
{
int to;
int dis;
Edge(int to, int dis){
this -> to = to;
this -> dis = dis;
}
};
typedef pair<int,int>P; int a,b,c;
int N,M,X;
int d1[1005],d2[1005];
vector<Edge> G1[1005];
vector<Edge> G2[1005];
void dijkstra(int s,int d[],vector<Edge> G[])
{
priority_queue<P,vector<P>,greater<P> >q;
d[s]=0;
q.push(P(0,s));
while(q.size())
{
P p=q.top();
q.pop();
int v=p.second;
for(int i=0;i<G[v].size();i++)
{
Edge& e=G[v][i];
if(d[e.to]>d[v]+e.dis)
{
d[e.to]=d[v]+e.dis;
q.push(P(d[e.to],e.to));
}
}
}
}
int main()
{
memset(d1,0x5f,sizeof(d1));
memset(d2,0x5f,sizeof(d2));
scanf("%d%d%d",&N,&M,&X);
for(int i=1;i<=M;i++)
{
scanf("%d%d%d",&a,&b,&c);
G1[a].push_back(Edge(b,c));
G2[b].push_back(Edge(a,c));
}
dijkstra(X,d1,G1);
dijkstra(X,d2,G2);
int small_max=-1;
for(int i=1;i<=N;i++)
{
if(i==X) continue;
small_max=max(small_max,d1[i]+d2[i]);
}
cout<<small_max<<endl;
}
POJ-3268-最短路(dijkstra算法)的更多相关文章
- poj 3268 最短路dijkstra *
题目大意:给出n个点和m条边,接着是m条边,代表从牛a到牛b需要花费c时间,现在所有牛要到牛x那里去参加聚会,并且所有牛参加聚会后还要回来,给你牛x,除了牛x之外的牛,他们都有一个参加聚会并且回来的最 ...
- 单源最短路dijkstra算法&&优化史
一下午都在学最短路dijkstra算法,总算是优化到了我能达到的水平的最快水准,然后列举一下我的优化历史,顺便总结总结 最朴素算法: 邻接矩阵存边+贪心||dp思想,几乎纯暴力,luoguTLE+ML ...
- 最短路Dijkstra算法的一些扩展问题
最短路Dijkstra算法的一些扩展问题 很早以前写过关于A*求k短路的文章,那时候还不明白为什么还可以把所有点重复的放入堆中,只知道那样求出来的就是对的.知其然不知其所以然是件容易引发伤痛的 ...
- POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。
POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...
- 【POJ - 3268 】Silver Cow Party (最短路 Dijkstra算法)
Silver Cow Party Descriptions 给出n个点和m条边,接着是m条边,代表从牛a到牛b需要花费c时间,现在所有牛要到牛x那里去参加聚会,并且所有牛参加聚会后还要回来,给你牛x, ...
- ACM: HDU 2544 最短路-Dijkstra算法
HDU 2544最短路 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Descrip ...
- 单源最短路Dijkstra算法——matlab实现
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijk ...
- hdu2544 最短路 Dijkstra算法
最短路(Dijkstra算法模板题) Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- 单源最短路(Dijkstra算法)
#返回上一级 @Author: 张海拔 @Update: 2015-03-11 @Link: http://www.cnblogs.com/zhanghaiba/p/3514570.html Dijk ...
- 单源最短路——dijkstra算法
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 问 ...
随机推荐
- Selenium基于Python web自动化基础二 -- 免登录、等待及unittest单元测试框架
一.免登录在进行测试的过程中难免会遇到登录的情况,给测试工作添加了工作量,本文仅提供一些思路供参考解决方式:手动请求中添加cookies.火狐的profile文件记录信息实现.人工介入.万能验证码.去 ...
- 我的DBDA类
<?php class DBDA { public $host="localhost"; public $uid="root"; public $pwd= ...
- 带有空格或tab的字符串的判断
class test { public static void main(String[] args) { String a = " "; //带有空格的字符串 if ( a.is ...
- VMware 12虚拟机下Ubuntu 16连不上网解决方法
打开自带Firefox浏览器,显示连接不上网,终端下 ping 也显示 unkown 解决方法: 1.打开虚拟机的“编辑”选项,选择“虚拟网络编辑器” 2.选择VMnet8(我不知道为啥VMnet ...
- CAD梦想看图6.0安卓版 20181022更新
下载地址: http://www.mxdraw.com/ndetail_10109.html 1. 保存上次的文件浏览位置和绘制颜色 2. 调整工具条按钮位置和文字 3. 增加测量距离和面积时的捕捉功 ...
- react native 从头开始
1.react-native run-android 报错SDK location not found. Define location with sdk.dir in the local.prope ...
- CentOS 7中firewall防火墙详解和配置以及切换为iptables防火墙--转载
最近在linux(这里用到的是Centos7的64位版本)安装nginx时,在开放80端口时用iptables设置端口 和重启服务发现提示未找到文件,在网络上收集查找后发现在Centos7中iptab ...
- Spring 中无处不在的 Properties
转自:https://javadoop.com/post/spring-properties?hmsr=toutiao.io&utm_medium=toutiao.io&utm_sou ...
- ie6,ie7,ie8,FF 浏览器兼容问题
javascript部分 1. document.form.item 问题问题:代码中存在 document.formName.item("itemName") 这样的语句,不能在 ...
- [C++] 化学方程式的格式化算法
网上普遍使用的化学方程式的格式普遍如下 例: KMnO4+FeSO4+H2SO4=Fe2(SO4)3+MnSO4+K2SO4+H2O 要把化学方程式格式化,单单一个正则表达式是非常反人类的,故可选用 ...