【bzoj3105】【cqoi2013】【新Nim游戏】【线性基+贪心】
Description
拿走最后一根火柴的游戏者胜利。
能够一堆都不拿,但不能够所有拿走。第二回合也一样,第二个游戏者也有这样一次机会。
从第三个回合(又轮到第一个游戏者)開始,规则和Nim游戏一样。
Input
第二行包括k个不超过109的正整数,即各堆的火柴个数。
Output
Sample Input
5 5 6 6 5 5
Sample Output
HINT
k<=100
题解:先手必胜的条件为剩下的火柴中不存在异或和为0的子集。
因此我们须要寻求极大的线性无关组。答案即为总和减去极大线性无关组的权值和。
能够证明这是一个拟阵,然后贪心就好了。贪心过程中维护线性基。
。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int ins[50],k,a[1001],c[1001];
long long ans,sum;
int main()
{
scanf("%d",&k);
for (int i=1;i<=k;i++) scanf("%d",&a[i]);
sort(a+1,a+k+1);
for (int i=1;i<=k;i++) sum+=(long long)(c[i]=a[i]);
for (int i=k;i>=1;i--)
{
for (int j=30;~j;j--)
if (a[i]&(1<<j))
{
if (!ins[j])
{
ins[j]=i;break;
}
else a[i]^=a[ins[j]];
}
if (a[i]) ans+=(long long )c[i];
}
printf("%lld",sum-ans);
}
【bzoj3105】【cqoi2013】【新Nim游戏】【线性基+贪心】的更多相关文章
- BZOJ3105:[CQOI2013]新Nim游戏(线性基,贪心)
Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...
- BZOJ.3105.[CQOI2013]新Nim游戏(线性基 贪心 博弈论)
题目链接 如果后手想要胜利,那么在后手第一次取完石子后 可以使石子数异或和为0.那所有数异或和为0的线性基长啥样呢,不知道.. 往前想,后手可以取走某些石子使得剩下石子异或和为0,那不就是存在异或和为 ...
- [CQOI2013]新Nim游戏 线性基
题面 题面 题解 首先我们知道nim游戏先手必败当且仅当所有石堆异或和为0,因此我们的目标就是要使对手拿石堆的时候,无论如何都不能使剩下的石堆异或和为0. 对于一个局面,如果我们可以选取一些可以凑出0 ...
- BZOJ 3105: [cqoi2013]新Nim游戏(线性基)
解题思路 \(nim\)游戏先手必胜的条件是异或和不为\(0\),也就是说第一个人拿走了若干堆后不管第二个人怎么拿都不能将剩余堆的异或和变成\(0\).考虑线性基,其实就是每个数对线性基都有贡献,任何 ...
- 洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论
正解:线性基 解题报告: 传送门! 这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$ 首先做这题的话需要一点点儿博弈论的小技能,,,这题的 ...
- BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基
[题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...
- BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基
一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...
- BZOJ3105: [cqoi2013]新Nim游戏
题解: 线性基?类似于向量上的基底. 此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673 代码: #include ...
- 【题解】 bzoj3105: [cqoi2013]新Nim游戏 (线性基+贪心)
bzoj3105,懒得复制 Solution: 首先你要有一个前置技能:如果每堆石子异或和为\(0\),则先手比输 这题我们怎么做呢,因为我们没人要先取掉几堆,为了赢对方一定会使剩下的异或和为\(0\ ...
- BZOJ3105: [cqoi2013]新Nim游戏(Xor线性无关组)
Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...
随机推荐
- esp8266 SOC方案经过半年沉淀之后再度重启
我发誓这是最后一次玩esp8266,该脱坑了...... 以前看不懂的教程 http://club.gizwits.com/thread-6447-1-1.html 2018教程 http://clu ...
- Ngnix SSL配置(HTTP、HTTPS兼容)
一.使用阿里云提供证书 下载aliyun证书for Nginx,解压出两个文件,.pem和.key文件 在nginx安装目录Conf文件夹下新建cert文件夹,拷贝两个密钥文件 二.配置nginx 打 ...
- golang tar gzip 压缩,解压(含目录文件)
tar是用于文件归档,gzip用于压缩.仅仅用tar的话,达不到压缩的目的.我们常见的tar.gz就是用gzip压缩生成的tar归档文件. go实现tar压缩与解压与zip类似,区别在于tar需要使用 ...
- Intel Processor Exception Handling
当一个进程的行为超出预期时,系统将把它kill掉. On Intel IA-32 and Intel 64 architecture processors, each architecturally- ...
- Django线上部署教程:腾讯云+Ubuntu+Django+Uwsgi(转载)
网站名称: 向东的笔记本 本文链接: https://www.eastnotes.com/post/29 版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议.转载请注明出处! ...
- P1223 排队接水
题目描述 有n个人在一个水龙头前排队接水,假如每个人接水的时间为Ti,请编程找出这n个人排队的一种顺序,使得n个人的平均等待时间最小. 输入输出格式 输入格式: 输入文件共两行,第一行为n:第二行分别 ...
- Linux学习笔记记录(六)
- python3爬虫-通过requests获取安居客房屋信息
import requests from fake_useragent import UserAgent from lxml import etree from http import cookiej ...
- STM32 内存管理实验
参考原文<STM32F1开发指南> 内存管理简介 内存管理,是指软件运行时对计算机内存资源的分配和使用的技术.最主要的目的是如何高效.快速的分配,并且在适当的时候释放和回收内存资源.内存管 ...
- 洛谷 1472 奶牛家谱 Cow Pedigrees
[题解] DP题,我们用f[i][j]表示有n个节点.高度小于等于j的二叉树的个数.f[i][j]=sigma(f[t][j-1]*f[i-t-1][j-1]) t是1~i-1范围内的奇数. #inc ...