原题链接:http://codevs.cn/problem/1227/

题目描述 Description

给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变成0,这样一共走K次,现在要求K次所达到的方格的数的和最大

输入描述 Input Description

第一行两个数n,k(1<=n<=50, 0<=k<=10)

接下来n行,每行n个数,分别表示矩阵的每个格子的数

输出描述 Output Description

一个数,为最大和

样例输入 Sample Input

3 1

1 2 3

0 2 1

1 4 2

样例输出 Sample Output

11

数据范围及提示 Data Size & Hint

1<=n<=50, 0<=k<=10


这道题是道很裸的拆点最小费用流,每个点拆开后建两条边,一条费用是-a[i][j],容量为1,另一条费用是0,容量为INF。其余的都用费用为0,容量为INF的边连接,每个点连到汇点。最后最小费用流的相反数就是答案。详见代码:

#include<iostream>
#include<vector>
#include<cstring>
#include<algorithm>
#include<string>
#include<queue>
#include<set>
#define MAX_N 55
#define MAX_V 6000
#define INF 1008611
using namespace std; int K,N;
int a[MAX_N][MAX_N];
struct edge{int to,cap,cost,rev;}; int V=0;
vector<edge> G[MAX_V];
int dist[MAX_V];
int prevv[MAX_V],preve[MAX_V]; void add_edge(int from,int to,int cap,int cost)
{
G[from].push_back((edge){to,cap,cost,G[to].size()});
G[to].push_back((edge){from,0,-cost,G[from].size()-1});
}
char cc;
int min_cost_flow(int s,int t,int f)
{
int res=0;
while(f>0)
{
fill(dist,dist+V,INF);
dist[s]=0;
bool update=1;
while(update)
{
update=0;
for(int v=0;v<V;v++)
{
if(dist[v]==INF)continue;
for(int i=0;i<G[v].size();i++)
{
edge &e=G[v][i];
if(e.cap>0&&dist[e.to]>dist[v]+e.cost)
{
//cout<<"*"<<endl;
dist[e.to]=dist[v]+e.cost;
prevv[e.to]=v;
preve[e.to]=i;
update=1;
}
}
}
}
if(dist[t]==INF)
return -1; int d=f;
for(int v=t;v!=s;v=prevv[v])
d=min(d,G[prevv[v]][preve[v]].cap);
f-=d;
res+=d*dist[t];
for(int v=t;v!=s;v=prevv[v])
{
edge &e=G[prevv[v]][preve[v]];
e.cap-=d;
G[v][e.rev].cap+=d;
}
}
return res;
} int main()
{
cin>>N>>K;
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
cin>>a[i][j];
V=N*N*2+1;
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
{
int v=(i*N+j)*2;
int u=v+1;
add_edge(v,u,1,-a[i][j]);
add_edge(v,u,INF,0);
if(i!=N-1)
add_edge(u,((i+1)*N+j)*2,INF,0);
if(j!=N-1)
add_edge(u,u+1,INF,0);
add_edge(u,V-1,INF,0);
}
cout<<-min_cost_flow(0,V-1,K)<<endl;
return 0;
}

CODEVS_1227 方格取数2 网络流 最小费用流 拆点的更多相关文章

  1. P2774 方格取数问题 网络流重温

    P2774 方格取数问题 这个题目之前写过一次,现在重温还是感觉有点难,可能之前没有理解透彻. 这个题目要求取一定数量的数,并且这些数在方格里面不能相邻,问取完数之后和最大是多少. 这个很好的用了网络 ...

  2. P2774 方格取数问题 网络流

    题目: P2774 方格取数问题 题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  3. LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流

    #6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  4. Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流)

    Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流) Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从 ...

  5. HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]

    题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...

  6. AC日记——[网络流24题]方格取数问题 cogs 734

    734. [网络流24题] 方格取数问题 ★★☆   输入文件:grid.in   输出文件:grid.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: 在一个有m*n ...

  7. [网络流24题] 方格取数问题/骑士共存问题 (最大流->最大权闭合图)

    洛谷传送门 LOJ传送门 和太空飞行计划问题一样,这依然是一道最大权闭合图问题 “骑士共存问题”是“方格取数问题”的弱化版,本题解不再赘述“骑士共存问题”的做法 分析题目,如果我们能把所有方格的数都给 ...

  8. Cogs 734. [网络流24题] 方格取数问题(最大闭合子图)

    [网络流24题] 方格取数问题 ★★☆ 输入文件:grid.in 输出文件:grid.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 在一个有m*n 个方格的棋盘中,每个方格 ...

  9. 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)

      HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...

随机推荐

  1. ios之UITextView

    我们计划创建UITextView,实现UITextViewDelegate协议方法,使用NSLog检查该方法何时被调用.我们还会接触到如何在TextView中限制字符的数量,以及如何使用return键 ...

  2. 初涉二维数点问题&&bzoj1935: [Shoi2007]Tree 园丁的烦恼

    离线好评 Description 很久很久以前,在遥远的大陆上有一个美丽的国家.统治着这个美丽国家的国王是一个园艺爱好者,在他的皇家花园里种植着各种奇花异草.有一天国王漫步在花园里,若有所思,他问一个 ...

  3. 【IDE_PyCharm】PyCharm中配置当鼠标悬停时快速提示方法参数

    方法一:通过在settings里面设置当鼠标至于方法之上时给出快速提示 方法二:按住Ctrl键,光标放在任意变量或方法上都会弹出该变量或方法的详细信息,点击鼠标还能跳转到变量或方法的定义处

  4. (49)zabbix事件是什么?事件来源有哪些分类

    什么是zabbix 事件 在trigger的文章内,我们已经有用到事件,这个事件要讲概念真心不知道怎么说,就拿trigger事件来说,如果trigger从当前值ok转变为problem,那么我们称之为 ...

  5. [php] 接口及方法和抽象类及方法的异同点

    比较项目 接口 抽象类 方法是否有实体 无 抽象方法无实体,非抽象方法可以有实体 方法开闭性 public public,protected,private 重载方法的开闭性 public 必须与父类 ...

  6. (转)ios应用导航模型

    Eko - MoboCentre 本文将介绍iPhone的导航风格,同时,也一并了解能够组织好应用内容和工具的导航方式.对于一个应用来说,最基础的操作就是基于页面间简单的移动,每张页面都完成一个任务或 ...

  7. Python中的socket网络编程(TCP/IP,UDP)讲解

    在网络编程中的一个基本组件就是套接字(socket).套接字基本上是两个端点的程序之间的"信息通道".程序可能分布在不同的计算机上,通过套接字互相发送信息.套接字包括两个:服务器套 ...

  8. Python 日期与时间

    Python 3.6.4 import time, calendar, datetime print("距离1970年的秒数为:", time.time()) print(&quo ...

  9. BNUOJ 19297 Code Refactoring

    Code Refactoring Time Limit: 3000ms Memory Limit: 131072KB   This problem will be judged on UVA. Ori ...

  10. Codeforces Round #305 (Div. 2) D. Mike and Feet

    D. Mike and Feet time limit per test 1 second memory limit per test 256 megabytes input standard inp ...