题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5667

题意:

Lcomyn 是个很厉害的选手,除了喜欢写17kb+的代码题,偶尔还会写数学题.他找到了一个数列:

fn=

1,ab,abfcn−1fn−2,n=1n=2otherwise

给定各个数,求fn。

分析:

可以发现最后都是a的倍数,这样我们让fn对a取对数,令tn=logafn方程就转化为b+ctn−1+tn−2,这样利用矩阵快速幂直接算幂数,最后快速幂一下就可以了。

注意:

  • 由费马小定理可知,ab%p=ab/(p−1)∗(p−1)+b%(p−1)%p=ab/(p−1)∗(p−1)%p∗ab%(p−1)%p=ab%(p−1)%p,所以矩阵快速幂的模应该为p−1。
  • 特别注意a%p==0的时候,答案应该为0。

代码:

#include<cstdio>
const int N = 105;
int mod = 1e9 + 7;
struct Matrix
{
int row,cal;
long long m[N][N];
};
Matrix init(Matrix a, long long t)
{
for(int i = 0; i < a.row; i++)
for(int j = 0; j < a.cal; j++)
a.m[i][j] = t;
return a;
}
Matrix mul(Matrix a,Matrix b)
{
Matrix ans;
ans.row = a.row, ans.cal = b.cal;
ans = init(ans,0);
for(int i = 0; i < a.row; i++)
for(int j = 0; j < b.cal; j++)
for(int k = 0; k < a.cal; k++)
ans.m[i][j] = (ans.m[i][j] + a.m[i][k] * b.m[k][j])%mod;
return ans;
}
int quickpow(int a, int b, int mod)
{
int ans = 1;
for(;b;b >>= 1, a = a * 1ll * a % mod){
if(b & 1) ans = ans * 1ll * a % mod;
}
return ans;
}
int quick_pow(long long k, int b, Matrix A)
{
if(k < 0) return 0;
if(k == 0) return b;
Matrix I;
I.row = 3, I.cal = 1;
I = init(I, 0);
I.m[0][0] = 1;
I.m[1][0] = b;
I.m[2][0] = 0;
while(k){
if(k & 1) I = mul(A, I);
A = mul(A, A);
k>>=1;
}
return I.m[1][0]%mod;
}
int main (void)
{
int T;scanf("%d", &T);
while(T--){
int a, b, c, p;
long long n;
scanf("%I64d%d%d%d%d", &n, &a,&b, &c, &p);
if(a % p == 0){printf("0\n");continue;}
mod = p - 1;
Matrix A;
A.row = 3, A.cal = 3;
A = init(A, 0);
A.m[0][0] = A.m[2][1] = A.m[1][2] = 1;
A.m[1][0] = b;A.m[1][1] = c;
int res = quick_pow(n - 2, b, A);
printf("%d\n", quickpow(a, res, p));
}
}

HDU 5667 Sequence【矩阵快速幂+费马小定理】的更多相关文章

  1. HDU 5667 Sequence 矩阵快速幂+费马小定理

    题目不难懂.式子是一个递推式,并且不难发现f[n]都是a的整数次幂.(f[1]=a0;f[2]=ab;f[3]=ab*f[2]c*f[1]...) 我们先只看指数部分,设h[n]. 则 h[1]=0; ...

  2. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

  3. HDU——5667Sequence(矩阵快速幂+费马小定理应用)

    Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total S ...

  4. hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...

  5. hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)

    Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...

  6. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  7. M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  8. hdu4549矩阵快速幂+费马小定理

    转移矩阵很容易求就是|0  1|,第一项是|0| |1  1|             |1| 然后直接矩阵快速幂,要用到费马小定理 :假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(m ...

  9. 2020牛客寒假算法基础集训营1 J. 缪斯的影响力 (矩阵快速幂/费马小定理降幂)

    https://ac.nowcoder.com/acm/problem/200658 f(n) = f(n-1) * f(n-2) * ab ,f的第一项是x,第二项是y. 试着推出第三项是x·y·a ...

随机推荐

  1. Velocity模板语法说明

    Velocity基本语法 "#"用来标识Velocity的关键字,包括#set.#if .#else.#end.#foreach.#end.#include.#parse.#mac ...

  2. bootstrap 两端对齐的导航

    您可以在屏幕宽度大于768px时,通过在分别使用.nav .nav-tabs或.nav .nav-pills的同时使用class.nav-justified,让标签式或胶囊式导航菜单与父元素等宽,在更 ...

  3. 【Java_基础】JVM内存模型与垃圾回收机制

    1. JVM内存模型 Java虚拟机在程序执行过程会把jvm的内存分为若干个不同的数据区域来管理,这些区域有自己的用途,以及创建和销毁时间. JVM内存模型如下图所示 1.1 程序计数器 程序计数器( ...

  4. DocDokuPLM 2.5安装

    安装记录:(大部分是环境安装和配置) 未完待续.

  5. struct 区别 在C 和C++ 中

    C语言中:   Struct是用户自定义数据类型(UDT).   C++语言中:   Struct是抽象数据类型(ADT),支持成员函数的定义.       在C++中,struct的成员的默认访问说 ...

  6. [php扩展] php安装扩展注意事项

    添加扩展的时候注意此3项 用的编译器版本:VC11... 安装的php版本:x86/x64 是否线程安全:enabled / disabled

  7. 浅谈Session与Cookie的关系

    一.概念理解: 首先cookie是服务端识别客户的唯一标识的依据,客户在访问网站时候,服务端为了记住这个客户,会在服务端按照它的规则制作一个cookie数据,会将这个cookie数据保留在服务端一段时 ...

  8. Windows环境下python3.7版本怎么安装pygame

    访问此网址 下载对应Python版本的pygame,如下图: 下载完成后,会有一个whl后缀的文件. 将此文件复制到Python根目录下的scripts目录下,打开cmd, 切换到scripts目录下 ...

  9. "javac不是内部或外部命令"的解决办法

    “javac不是内部或外部命令”,而此时的java环境是好用的: 1.先检查 JAVA_HOME  =   C:\Program Files\Java\jdk1.7.0_45 classpath   ...

  10. 面试准备——springboot相关

    https://www.jianshu.com/p/63ad69c480fe https://blog.csdn.net/u013605060/article/details/80255192 htt ...