P2054 [AHOI2005]洗牌

扩展欧拉定理求逆元

$1 2 3 4 5 6$
$4 1 5 2 6 3$
$2 4 6 1 3 5$
$1 2 3 4 5 6$

手推一下样例,你就会发现是有规律的:

位置->位置

$1->2$

$2->4$

$3->6$

$4->1$

$5->3$

$6->5$

规律显然,位于位置$x$的数,进行一次洗牌操作位置就会变成$x*2\%(n+1)$

那么位于$x$的数,经过$m$次操作,位置就会变成$x*2^m\%(n+1)$

那么可以列出一下同余方程

$x*2^m≡k(mod(n+1))$

然后就比较显然了,只有一个未知数$x$,扩展$gcd$好了,=_=,博主太蒟,没有看懂

另一种解释方法是:

变换一下得:$x≡k*{2^{m}}^{-1}(mod(n+1))$

问题就转换成了求解${2^{m}}$在$\%(n+1)$意义下的逆元,还是$exgcd$

$ans={2^{m}}^{-1}*l\%(n+1)$

#include<iostream>
#include<cstdio> #define LL long long
using namespace std; LL n,m,l;
LL pow(LL a,LL b){
LL s=;
for(;b;b>>=,a=a*a%(n+))
if(b&) s=s*a%(n+);
return s;
} LL exgcd(LL a,LL b,LL &x,LL &y){
if(!b){x=,y=;return a;}
LL gc=exgcd(b,a%b,x,y);
LL tmp=x;x=y;y=tmp-a/b*y;
return gc;
} int main()
{
scanf("%lld%lld%lld",&n,&m,&l);
LL m_2=pow(,m);
LL x,y;
exgcd(m_2,n+,x,y); printf("%lld\n",(x*l%(n+)+(n+))%(n+)); return ;
}

洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)的更多相关文章

  1. [BZOJ1965][AHOI2005] 洗牌 - 扩展欧几里得

    题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打 ...

  2. 洛谷P2054 [AHOI2005]洗牌(扩展欧几里德)

    洛谷题目传送门 来个正常的有证明的题解 我们不好来表示某时刻某一个位置是哪一张牌,但我们可以表示某时刻某一张牌在哪个位置. 设数列\(\{a_{i_j}\}\)表示\(i\)号牌经过\(j\)次洗牌后 ...

  3. 洛谷 P2054 [AHOI2005]洗牌

    题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打 ...

  4. BZOJ 1965 洗牌(扩展欧几里得)

    容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置. 于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解. 显然可以用扩展欧几里得求出. # include ...

  5. 洛谷P2421 [NOI2002]荒岛野人(扩展欧几里得)

    题目背景 原 A-B数对(增强版)参见P1102 题目描述 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,…,M.岛上住着N个野人,一开始依次住在山洞C1,C2,… ...

  6. [luogu P2054] [AHOI2005]洗牌

    [luogu P2054] [AHOI2005]洗牌 题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学 ...

  7. P2054 [AHOI2005]洗牌

    P2054 [AHOI2005]洗牌 题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度 ...

  8. 【BZOJ1965】[AHOI2005]洗牌(数论)

    [BZOJ1965][AHOI2005]洗牌(数论) 题面 BZOJ 洛谷 题解 考虑反过来做这个洗牌的操作,假定当前牌是第\(l\)张. 因为之前洗的时候考虑了前一半和后一半,所以根据\(l\)的奇 ...

  9. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

随机推荐

  1. Go 语言的下一个大版本:Go 2.0 被安排上了(全面兼容1.X,改进错误处理和泛型这两大主题)

    今年 8 月 Go 开发团队公布了 Go 2.0 的设计草案,包括错误处理和泛型这两大主题.现在备受瞩目的 Go 2.0 又有了新动向 —— 昨日 Go 开发团队在其官方博客表示,Go 2 已经被安排 ...

  2. STL 之 list源码自行实现(iterator)

    (0)文件夹 STL 之 vector源码实现(云算法<< [] = 重载, new delete,throw catch) STLc++中string类的源码 堆(stack) 之 c ...

  3. docker 基本指令

    sudo docker info 查看docker状态. jiqing@ThinkPad:~$ sudo docker info [sudo] password for jiqing: Contain ...

  4. 魏汝盼医学博士 - Judy Zhu Wei, M.D., F.A.C.O.G.

    魏汝盼医学博士 - Judy Zhu Wei, M.D., F.A.C.O.G.         医院(诊所)名称:CAPRI妇产科诊所 妇产科,华人医生,微创妇科手术专科医生,女医生,fountai ...

  5. 【POJ 2983】 Is the information reliable?

    [题目链接] 点击打开链接 [算法] 差分约束系统,SPFA判负环 [代码] #include <algorithm> #include <bitset> #include & ...

  6. MyBatis高级查询 一对多映射

    数据库表在一对一映射中. 在数据库sys_user_role中新增一条记录 一个用户可以有多个角色.查询出所有用户和所对应的角色. 1.collection集合的嵌套结果映射 <!-- SysU ...

  7. P3349 [ZJOI2016]小星星

    传送门 题意都需要看题解才能明白我是不是已经废了 题意就是求一个从树\(S\)到图\(T\)的映射,满足若树上的两个点有边,则它们映射在图中的两个点也连有边,且不能有多个点映射到同一个点 我们先不考虑 ...

  8. Django day 33 vue中使用element-ui的使用,课程的相关介绍,vue绑定图片,课程列表接口,课程详情页面

    一:vue中使用element-ui的使用, 二:课程的相关介绍, 三:vue绑定图片, 四:课程列表接口, 五:课程详情页面

  9. deepin 安装 idea

    1.su root 2.sudo apt install idea 3.sudo vi /etc/hosts 最后一行添加 0.0.0.0 account.jetbrains.com 4.注册码 N7 ...

  10. 【题解】PIE [POI2015] [P3585]

    [题解]\(PIE\) \([POI2015]\) \([P3585]\) 逼自己每天一道模拟题 传送门:\(PIE\) \([POI2015]\) \([P3585]\) [题目描述] 一张 \(n ...