P2054 [AHOI2005]洗牌

扩展欧拉定理求逆元

$1 2 3 4 5 6$
$4 1 5 2 6 3$
$2 4 6 1 3 5$
$1 2 3 4 5 6$

手推一下样例,你就会发现是有规律的:

位置->位置

$1->2$

$2->4$

$3->6$

$4->1$

$5->3$

$6->5$

规律显然,位于位置$x$的数,进行一次洗牌操作位置就会变成$x*2\%(n+1)$

那么位于$x$的数,经过$m$次操作,位置就会变成$x*2^m\%(n+1)$

那么可以列出一下同余方程

$x*2^m≡k(mod(n+1))$

然后就比较显然了,只有一个未知数$x$,扩展$gcd$好了,=_=,博主太蒟,没有看懂

另一种解释方法是:

变换一下得:$x≡k*{2^{m}}^{-1}(mod(n+1))$

问题就转换成了求解${2^{m}}$在$\%(n+1)$意义下的逆元,还是$exgcd$

$ans={2^{m}}^{-1}*l\%(n+1)$

#include<iostream>
#include<cstdio> #define LL long long
using namespace std; LL n,m,l;
LL pow(LL a,LL b){
LL s=;
for(;b;b>>=,a=a*a%(n+))
if(b&) s=s*a%(n+);
return s;
} LL exgcd(LL a,LL b,LL &x,LL &y){
if(!b){x=,y=;return a;}
LL gc=exgcd(b,a%b,x,y);
LL tmp=x;x=y;y=tmp-a/b*y;
return gc;
} int main()
{
scanf("%lld%lld%lld",&n,&m,&l);
LL m_2=pow(,m);
LL x,y;
exgcd(m_2,n+,x,y); printf("%lld\n",(x*l%(n+)+(n+))%(n+)); return ;
}

洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)的更多相关文章

  1. [BZOJ1965][AHOI2005] 洗牌 - 扩展欧几里得

    题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打 ...

  2. 洛谷P2054 [AHOI2005]洗牌(扩展欧几里德)

    洛谷题目传送门 来个正常的有证明的题解 我们不好来表示某时刻某一个位置是哪一张牌,但我们可以表示某时刻某一张牌在哪个位置. 设数列\(\{a_{i_j}\}\)表示\(i\)号牌经过\(j\)次洗牌后 ...

  3. 洛谷 P2054 [AHOI2005]洗牌

    题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打 ...

  4. BZOJ 1965 洗牌(扩展欧几里得)

    容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置. 于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解. 显然可以用扩展欧几里得求出. # include ...

  5. 洛谷P2421 [NOI2002]荒岛野人(扩展欧几里得)

    题目背景 原 A-B数对(增强版)参见P1102 题目描述 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,…,M.岛上住着N个野人,一开始依次住在山洞C1,C2,… ...

  6. [luogu P2054] [AHOI2005]洗牌

    [luogu P2054] [AHOI2005]洗牌 题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学 ...

  7. P2054 [AHOI2005]洗牌

    P2054 [AHOI2005]洗牌 题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度 ...

  8. 【BZOJ1965】[AHOI2005]洗牌(数论)

    [BZOJ1965][AHOI2005]洗牌(数论) 题面 BZOJ 洛谷 题解 考虑反过来做这个洗牌的操作,假定当前牌是第\(l\)张. 因为之前洗的时候考虑了前一半和后一半,所以根据\(l\)的奇 ...

  9. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

随机推荐

  1. qq 空间视频地址 的 有效期 403

    大约 在24-48小时内 200 http://vwecam.gtimg.com/1006_aa21a85ef3d245f19535cf2ab941ccbb.f0.mp4?ptype=http& ...

  2. spi和I2c的速率

    I2C协议v2.1规定了100K,400K和3.4M三种速率(bps).SPI是一种事实标准,由Motorola开发,并没有一个官方标准.已知的有的器件SPI已达到50Mbps.具体到产品中SPI的速 ...

  3. 8-23 canvas专题

    8-23 canvas专题-了解外部框架的使用 学习要点 掌握画布内容的导出的toDataURL()方法 了解外部框架的使用 第八章内容介绍 在第八章中我们将对以前的知识进行简单的回顾,着重对canv ...

  4. JFreeChart生成柱形图(2) (转自 JSP开发技术大全)

    JFreeChart生成柱形图(2) (转自 JSP开发技术大全) 14.2 利用JFreeChart生成柱形图14.2.1 利用DefaultCategoryDataset数据集绘制柱形图 通过JF ...

  5. Silverlight之控件应用总结(二)(4)

    [置顶] Silverlight之控件应用总结(二)(4) 分类: 技术2012-04-03 22:12 846人阅读 评论(0) 收藏 举报 silverlightradiobuttonhyperl ...

  6. 关于redis、memcache、mongoDB的对比

    从以下几个维度,对 Redis.memcache.MongoDB 做了对比.1.性能都比较高,性能对我们来说应该都不是瓶颈.总体来讲,TPS 方面 redis 和 memcache 差不多,要大于 m ...

  7. 21 WPF数据视图

    视图对象 当你绑定集合到ItemsControl,在幕后数据视图被安静地创造.视图位于数据源和绑定控件之间.数据视图是通往数据源的一个窗口.它跟踪当前项目,它支持诸如排序,过滤,和分组特征.这些特征独 ...

  8. bzoj1407 [Noi2002]Savage——扩展欧几里得

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1407 看到一定有解,而且小于10^6,所以可以枚举: 判断一个解是否可行,就两两判断野人 i ...

  9. MyBatis基本应用

    框架的概念: 框架(Framework)是一个提供了可重用的公共结构的半成品. 数据持久化: 数据持久化是将内存中的数据模型转换为存储模型,以及将存储模型转换为内存中的数据模型的统称. ORM(Obj ...

  10. 【WIP_S4】栈

    创建: 2018/01/15 更新: 2018/01/24 更改标题 [[WIP_S3]堆] => [[WIP_S4]堆] 继续添加内容 更新: 2018/05/13 更改标题  [[WIP_S ...