给出3个正整数A B C,求A^B Mod C。

 
例如,3 5 8,3^5 Mod 8 = 3。
Input
3个正整数A B C,中间用空格分隔。(1 <= A,B,C <= 10^9)
Output
输出计算结果
Input示例
3 5 8
Output示例
3
解:
思路一:暴力求解。
思路二:通过公式(a * b) mod c = ((a mod c)*(b mod c)) mod c 简化求解。
思路三:快速幂。简单的说,快速幂就是将指数转化为二进制的形式并差分开相乘(理解的关键在于明白指数上二进制每左移一位,整个数就在原基础上乘方)。
思路二较之思路一避免了求解a^b的过程中,其值溢出的可能;而快速幂则提高了计算a^b的速度。
 #include <stdio.h>

 int main()
{
long long a, b, c;
while (scanf_s("%lld%lld%lld", &a, &b, &c) != EOF)
{
int ans = ;
a %= c;
while (b)
{
if (b & )
{
ans = ans * a % c;
}
a = a * a % c;
b >>= ;
}
printf("%d\n", ans);
}
return ;
}

(快速幂)51NOD 1046 A^B Mod C的更多相关文章

  1. 计算幂 51Nod 1046 A^B Mod C

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  2. 算法竞赛进阶指南--快速幂,求a^b mod p

    // 快速幂,求a^b mod p int power(int a, int b, int p) { int ans = 1; for (; b; b >>= 1) { if (b &am ...

  3. 51Nod 1046 A^B Mod C(日常复习快速幂)

    1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = ...

  4. 矩阵快速幂 51nod

    基准时间限制:3 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 给出一个N * N的矩阵,其中的元素均为正整数.求这个矩阵的M次方.由于M次方的计算结果太大,只需要输出 ...

  5. 51NOD 1046 A^B Mod C

    给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) ...

  6. 快速幂(51Nod1046 A^B Mod C)

    快速幂也是比较常用的,原理在下面用代码解释,我们先看题. 51Nod1046 A^B Mod C 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. In ...

  7. (分治法 快速幂)51nod1046 A^B Mod C

    1046 A^B Mod C   给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. 收起   输入 3个正整数A B C,中间用空格分隔.(1 < ...

  8. 51Nod 1046 A^B Mod C Label:快速幂

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  9. XTU 1260 - Determinant - [2017湘潭邀请赛A题(江苏省赛)][高斯消元法][快速幂和逆元]

    是2017江苏省赛的第一题,当时在场上没做出来(废话,那个时候又不懂高斯消元怎么写……而且数论也学得一塌糊涂,现在回来补了) 省赛结束之后,题解pdf就出来了,一看题解,嗯……加一行再求逆矩阵从而得到 ...

随机推荐

  1. conflunce安装配置

    下载 下载Confluence-v5.4.4.zip包,其中包含   atlassian-confluence-5.4.4-x64.bin #程序二进制文件 confluence5.x-crack.z ...

  2. Java Class 利用classpath来获取源文件地址

    利用classpath来获取源文件地址 @author ixenos 应用场景 Properties props = new Properties(); /** * . 代表java命令运行的目录 * ...

  3. 全文搜索(AC-1)-互联网信息过载问题

    什么是信息过载? 信息检索技术是什么? 信息过滤技术是什么?

  4. 如何写Java文档注释(Java Doc Comments)

    本文翻译自How to Write Doc Comments for the Javadoc Tool,但是精简了一些私以为不重要的东西 本文不讨论如何使用javadoc工具自动生成文档的方法,而是主 ...

  5. PHP 关键词

    PHP 关键词 TCP 传输层通信协议 面向连接的.可靠的.基于字节流的 建立链接需要三次握手 Socket(套接字) 一个工具,一个接口 封装了TCP/IP协议 建立长链接的基础 HTTP 一个应用 ...

  6. [bzoj2229][Zjoi2011]最小割_网络流_最小割树

    最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...

  7. cn_windows_10_multiple_editions_version_1607_updated_jul_2016_x64

    ed2k://|file|cn_windows_10_multiple_editions_version_1607_updated_jul_2016_x64_dvd_9056935.iso|43471 ...

  8. linux 的硬链接与软连接

    linux 里有硬链接和软连接两种概念.要明白这些概念首先要明白文件在linux 上其实有3个组成部分. data 真正的数据存储区域 inode 一个用来唯一表示data的数据结构 filename ...

  9. ArcGIS for Android离线数据编辑实现原理

    来自:http://blog.csdn.net/arcgis_mobile/article/details/7565877 ArcGIS for Android中现已经提供了离线缓存图片的加载功能,极 ...

  10. Python学习系列之内置函数

    数学相关 abs(a):求取绝对值 max(list):求取list最大值 min(list):求取list最小值 sum(list):求取list元素的和 sorted(list):排序,返回排序后 ...