题目大意:求sum i(1->n) (sum j(1->n) (gcd(i,j)))。

对于每对(i,j)都来一次gcd很慢,但是我们知道,一个约数i在1~n范围内是n/i个数的约数。gcd也是个约数,如果能利用到这一点,不就可以同时处理很多对(i,j)了吗?

我们看看最大公约数等于i的数对(x,y)个数f[i]是多少,再让f[i]*(2*i-1)就是这个最大公因数对答案ans做出的贡献。

f[i]=公约数中含有i的个数-sum j(i->min(m,n)/i) (f[i*j])。容斥原理,如果i*j是某个数对的最大公因数,则i就不是它的最大公因数。把这样的点都抠掉,剩下的就都是关于最大公因数是i的了。

公约数含有i的个数=m/i*n/i。数对(x,y)的公约数中含有i当且仅当i既是x的约数又是y的约数。先选择约数中含有i的x,其有m/i个。这时再选择y,其有n/i个。根据乘法原理,因为是依次选择,所以两个式子相乘。

#include <cstdio>
using namespace std; #define ll long long const int MAX_N = 100010; ll Proceed(ll n)
{
ll ans = 0;
static ll f[MAX_N];
for (int i = n; i >= 1; i--)
{
f[i] = (n / i) * (n / i);
for (int j = 2; j <= n / i; j++)
f[i] -= f[i*j];
ans += i*f[i];
}
return ans;
} int main()
{
#ifdef _DEBUG
freopen("c:\\noi\\source\\input.txt", "r", stdin);
#endif
ll n;
scanf("%lld", &n);
printf("%lld\n", Proceed(n));
return 0;
}

  

luogu2398 SUM GCD的更多相关文章

  1. luoguP2398 GCD SUM [gcd]

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...

  2. LuoguP2398 GCD SUM

    题目地址 题目链接 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n ...

  3. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  4. 洛谷P2398 GCD SUM

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...

  5. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  6. *P2398 GCD SUM[数论]

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 解析 给出n求sum. gcd(x,y)表示x,y的最大公约数. 直接枚举复杂度为\(O(n^2)\),显然无 ...

  7. 1220 - Mysterious Bacteria--LightOj1220 (gcd)

    http://lightoj.com/volume_showproblem.php?problem=1220 题目大意: 给你一个x,求出满足 x=b^p, p最大是几. 分析:x=p1^a1*p2^ ...

  8. USACO GCD Extreme(II)

    题目大意:求gcd(1,2)+gcd(1,3)+gcd(2,3)+...+gcd(n-1,n) ---------------------------------------------------- ...

  9. 关于gcd的几个问题

    这两天刷了几个关于gcd的很类似的问题,总结一下: BZOJ2818 1<=x<=n,1<=y<=n,求满足gcd(x,y)=质数的个数 BZOJ2190 1<=x< ...

随机推荐

  1. 常州模拟赛d6t3 噪音

    FJ有M个牛棚,编号1至M,刚开始所有牛棚都是空的.FJ有N头牛,编号1至N,这N头牛按照编号从小到大依次排队走进牛棚,每一天只有一头奶牛走进牛棚.第i头奶牛选择走进第p[i]个牛棚.由于奶牛是群体动 ...

  2. 【2018.9.26】K-D Tree详解

    网上对K-D-Tree的讲解不尽清晰,我学了很久都不会写,这里新开一文做一些讲解. 1.K-D-Tree是什么? K-DTree 即 K-Dimensional-Tree,常用来作空间划分及近邻搜索, ...

  3. Hadoop 3.1.0 在 Ubuntu 16.04 上的安装过程

    安装过程主要参考官方文档: http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster. ...

  4. linux虚拟机无法上网 Network is unreachable

    系统centos 安装ftp时报错 Couldn't resolve host 'mirrorlist.centos.org [root@wulihua bin]#  yum install vsft ...

  5. 标准C程序设计七---04

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  6. eclipse 安卓虚拟机安装apk 及常见问题

    首先必须启动虚拟机然后如图操作:

  7. Oracle的memory_max_target和memory_target修改和ORA-00845: MEMORY_TARGET not supported on this system错误解决

    https://blog.csdn.net/sunny05296/article/details/56495599

  8. JS实现限行

    一.JS代码实现 1. 机动车辆限行如下图所示: 具体详情请访问:http://www.bjjtgl.gov.cn/zhuanti/10weihao/index.html 2.JS代码实现 <! ...

  9. 快速掌握RabbitMQ(一)——RabbitMQ的基本概念、安装和C#驱动

    1 RabbitMQ简介 RabbitMQ是一个由erlang开发的AMQP(Advanced Message Queue )的开源实现,官网地址:http://www.rabbitmq.com.Ra ...

  10. ASP.NET Core 依赖注入(构造函数注入,属性注入等)

    原文:ASP.NET Core 依赖注入(构造函数注入,属性注入等) 如果你不熟悉ASP.NET Core依赖注入,先阅读文章: 在ASP.NET Core中使用依赖注入   构造函数注入 构造函数注 ...