题目大意:求sum i(1->n) (sum j(1->n) (gcd(i,j)))。

对于每对(i,j)都来一次gcd很慢,但是我们知道,一个约数i在1~n范围内是n/i个数的约数。gcd也是个约数,如果能利用到这一点,不就可以同时处理很多对(i,j)了吗?

我们看看最大公约数等于i的数对(x,y)个数f[i]是多少,再让f[i]*(2*i-1)就是这个最大公因数对答案ans做出的贡献。

f[i]=公约数中含有i的个数-sum j(i->min(m,n)/i) (f[i*j])。容斥原理,如果i*j是某个数对的最大公因数,则i就不是它的最大公因数。把这样的点都抠掉,剩下的就都是关于最大公因数是i的了。

公约数含有i的个数=m/i*n/i。数对(x,y)的公约数中含有i当且仅当i既是x的约数又是y的约数。先选择约数中含有i的x,其有m/i个。这时再选择y,其有n/i个。根据乘法原理,因为是依次选择,所以两个式子相乘。

#include <cstdio>
using namespace std; #define ll long long const int MAX_N = 100010; ll Proceed(ll n)
{
ll ans = 0;
static ll f[MAX_N];
for (int i = n; i >= 1; i--)
{
f[i] = (n / i) * (n / i);
for (int j = 2; j <= n / i; j++)
f[i] -= f[i*j];
ans += i*f[i];
}
return ans;
} int main()
{
#ifdef _DEBUG
freopen("c:\\noi\\source\\input.txt", "r", stdin);
#endif
ll n;
scanf("%lld", &n);
printf("%lld\n", Proceed(n));
return 0;
}

  

luogu2398 SUM GCD的更多相关文章

  1. luoguP2398 GCD SUM [gcd]

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...

  2. LuoguP2398 GCD SUM

    题目地址 题目链接 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n ...

  3. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  4. 洛谷P2398 GCD SUM

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...

  5. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  6. *P2398 GCD SUM[数论]

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 解析 给出n求sum. gcd(x,y)表示x,y的最大公约数. 直接枚举复杂度为\(O(n^2)\),显然无 ...

  7. 1220 - Mysterious Bacteria--LightOj1220 (gcd)

    http://lightoj.com/volume_showproblem.php?problem=1220 题目大意: 给你一个x,求出满足 x=b^p, p最大是几. 分析:x=p1^a1*p2^ ...

  8. USACO GCD Extreme(II)

    题目大意:求gcd(1,2)+gcd(1,3)+gcd(2,3)+...+gcd(n-1,n) ---------------------------------------------------- ...

  9. 关于gcd的几个问题

    这两天刷了几个关于gcd的很类似的问题,总结一下: BZOJ2818 1<=x<=n,1<=y<=n,求满足gcd(x,y)=质数的个数 BZOJ2190 1<=x< ...

随机推荐

  1. iOS学习笔记13-网络(二)NSURLSession

    在2013年WWDC上苹果揭开了NSURLSession的面纱,将它作为NSURLConnection的继任者.现在使用最广泛的第三方网络框架:AFNetworking.SDWebImage等等都使用 ...

  2. spring aop在mvc的controller中加入切面无效

    spring aop在mvc的controller中加入切面无效 因为MVC的controller,aop默认使用jdk代理.要使用cglib代理. 在spring-mybatis.xml配置文件中加 ...

  3. poj 3304 判断是否存在一条直线与所有线段相交

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8579   Accepted: 2608 Descript ...

  4. ElasticSearch聚合aggs入门

    Elasticsearch是一款功能强大的开源软件,不仅可以检索排序,还可以对文档进行更复杂的操作--聚合. 1.单值聚合 Sum求和,dsl参考如下: { "size": 0, ...

  5. 标准C程序设计七---12

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  6. WEB学习-CSS基础选择器

    基础选择器 标签选择器 就是标签的名字. • <h1>前端与移动开发<span>1期班</span>基础班</h1> css: • <style ...

  7. 【深入Java虚拟机】之六:Java语法糖

    语法糖(Syntactic Sugar),也称糖衣语法,是由英国计算机学家Peter.J.Landin发明的一个术语,指在计算机语言中添加的某种语法,这种语法对语言的功能并没有影响,但是更方便程序员使 ...

  8. django : related_name and related_query_name

    This post is about two Django ForeignKey parameters related_name related_query_name See an example b ...

  9. 深入GCD(二): 多核心的性能

    概念为了在单一进程中充分发挥多核的优势,我们有必要使用多线程技术(我们没必要去提多进程,这玩意儿和GCD没关系).在低层,GCD全局dispatch queue仅仅是工作线程池的抽象.这些队列中的Bl ...

  10. 关于android分享(sharedsdk的简单使用)

    老早就使用了.可是如今才写,惰性太大,如今改 如今做产品的话相信大家基本都做分享吧.一个是项目的需求须要,另一个是能够非常好的宣传自己的产品.其它的优点依据情况而论 事实上每一个平台都有它自己的文档, ...