本学期的高等代数每周一题活动计划从第2教学周开始,到第15教学周结束,每周的周末公布一道思考题(共14道,思考题一般与下周授课内容密切相关),供大家思考和解答。每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代数在线课程19级课群”(以课群话题的形式)这两个渠道同时发布。有兴趣的同学可以将每周一题的解答写在纸上、拍成图片,并上传到每周一题对应的课群话题中。本人会定期对每周一题的解答进行批改和评价,并将优秀解答标记出来推荐给全班同学。

[问题2019A01]  请用教材第1章“行列式”中的方法求出下列 $n$ 阶行列式的值 (注意: 不能使用教材第2章“矩阵”中的“矩阵乘法”、“Cauchy-Binet公式”和“降阶公式”等方法):

(1) $|A|=\begin{vmatrix} 2a_1 & a_1+a_2 & \cdots & a_1+a_n \\  a_2+a_1 & 2a_2 & \cdots & a_2+a_n \\ \vdots & \vdots & & \vdots \\ a_n+a_1 & a_n+a_2 & \cdots & 2a_n \\ \end{vmatrix}$,

(2) $|B|=\begin{vmatrix} 0 & a_1+a_2 & \cdots & a_1+a_n \\  a_2+a_1 & 0 & \cdots & a_2+a_n \\ \vdots & \vdots & & \vdots \\ a_n+a_1 & a_n+a_2 & \cdots & 0 \\ \end{vmatrix}$.

[问题2019A02]  设 2019 阶行列式 $$|A|=\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{2018} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{2018} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{2019} & x_{2019}^2 & \cdots & x_{2019}^{2018} \\ \end{vmatrix}.$$ 设 $|A|$ 的代数余子式分别为 $A_{ij}\,(1\leq i,j\leq 2019)$, 试求 $\sum\limits_{i,j=1}^{2019}(x_i^{2019}+j^{70})A_{ij}$.

[问题2019A03]  有限集合 $T$ 到自身上的一个双射 (即既单又满的映射) 称为 $T$ 上的一个置换 (Permutation), 集合 $S=\{1,2,\dots,n\}$ 的全体置换构成的集合记为 $S_n$. 对任一 $\sigma\in S_n$, $(\sigma(1),\sigma(2),\dots,\sigma(n))$ 是 $S$ 的一个全排列; 反之, 对 $S$ 的任一全排列 $(k_1,k_2,\dots,k_n)$, 定义 $\sigma(i)=k_i\,(\forall\,1\leq i\leq n)$, 则 $\sigma$ 是 $S$ 的一个置换. 因此, 我们可以把 $S$ 的置换和全排列等同起来.

设 $\sigma,\tau\in S_n$, $\tau$ 与 $\sigma$ 的乘积 $\tau\sigma$ 定义为 $\tau\sigma(i)=\tau(\sigma(i))\,(\forall\,1\leq i\leq n)$ (其实就是映射的复合), 容易验证 $\tau\sigma\in S_n$ 且乘法满足结合律. 设 $e:S\to S$ 为恒等映射, 即 $e(i)=i\,(\forall\,1\leq i\leq n)$, 则 $e\in S_n$. 因为 $\sigma:S\to S$ 是双射, 所以其逆映射 $\sigma^{-1}:S\to S$ 也是双射, 即 $\sigma^{-1}\in S_n$, 并且满足 $\sigma^{-1}\sigma=\sigma\sigma^{-1}=e$ (以上事实说明: $n$ 阶置换全体 $S_n$ 构成一个群, 称为 $n$ 阶对称群).

设 $e_1,e_2,\dots,e_n$ 是 $n$ 维标准单位列向量 (定义见高代教材第 109 页复习题 1), $\sigma\in S_n$, 定义矩阵 $$P_\sigma=(e_{\sigma(1)},e_{\sigma(2)},\dots,e_{\sigma(n)}),$$ 称为相伴于置换 $\sigma$ 的 $n$ 阶置换矩阵. 置换矩阵的等价定义是: $n$ 阶方阵 $P$ 的每行每列只有一个元素非零, 并且那些非零元素都等于 1. 设 $A$ 为 $n$ 阶方阵, $\sigma,\tau\in S_n$, 试证明以下结论 (第 3 小问说明: $n$ 阶置换矩阵全体 $\mathcal{P}_n$ 构成一个群, 它是 $n$ 阶正交群 $O(n)$ 的子群, 并且 $P:S_n\to\mathcal{P}_n$, $\sigma\mapsto P_\sigma$, 是一个群同构):

(1) 第一类初等矩阵 $P_{ij}$ (定义见高代教材第 84 页), 基础循环矩阵 $J$ (定义见高代白皮书第 56 页的例 2.1) 和反单位阵 (定义见高代教材第 323 页第 5 行最右端的矩阵) 都是置换矩阵.

(2) $|P_\sigma|=(-1)^{N(\sigma)}$, 其中 $N(\sigma)$ 是 $\sigma$ 作为全排列的逆序数.

(3) $P_{\tau\sigma}=P_\tau P_\sigma$, $P_e=I_n$, $P_{\sigma^{-1}}=P_\sigma^{-1}=P_\sigma'$.

(4) $AP_\sigma$ 的列向量是 $A$ 的列向量的一个置换, 即 $AP_\sigma$ 的第 $i$ 列是 $A$ 的第 $\sigma(i)$ 列; $P_\sigma'A$ 的行向量是 $A$ 的行向量的一个置换, 即 $P_\sigma'A$ 的第 $i$ 行是 $A$ 的第 $\sigma(i)$ 行.

[问题2019A04]  试求

(1) 与全体循环矩阵 (定义见高代白皮书第 59 页的例 2.12) 都乘法可交换的所有的 $n$ 阶方阵.

(2) 与全体置换矩阵 $\{P_\sigma,\,\sigma\in S_n\}$ 都乘法可交换的所有的 $n$ 阶方阵.

[问题2019A05]  求下列 $n$ 阶方阵的行列式 (第四行的 $\cdots$ 表示平移, 其余空白处元素都为零):

$$\begin{pmatrix} a^2\!+\!bc & 2ab & b^2 & & & & & & & & \\ 2ac & a^2\!+\!2bc & 2ab & b^2 & & & & & & & \\ c^2 & 2ac & a^2\!+\!2bc & 2ab & b^2 & & & & & & \\ & & & & & \cdots & & & & & \\ & & & & & & c^2 & 2ac & a^2\!+\!2bc & 2ab & b^2 \\  & & & & & & & c^2 & 2ac & a^2\!+\!2bc & 2ab \\ & & & & & & & & c^2 & 2ac & a^2\!+\!bc \\ \end{pmatrix}.$$

[问题2019A06]  证明: $n$ 阶非异阵 $A$ 仅通过第三类初等行变换就可变为 $\mathrm{diag}\{1,\cdots,1,|A|\}$.

  本题是白皮书例 2.34 的推广.

[问题2019A07]  设循环矩阵 $$A=\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ n & 1 & 2 & \cdots & n-1 \\ n-1 & n & 1 & \cdots & n-2 \\ \vdots & \vdots & \vdots & & \vdots \\ 2 & 3 & 4 & \cdots & 1 \\ \end{pmatrix}.$$

(1) 请用白皮书例 2.52 的结论计算 $|A|$, 并与白皮书例 1.21 (行列式求和法) 的结果进行比较.

(2) 设 $A_{ij}$ 是 $A$ 的第 $(i,j)$ 元素的代数余子式, 求 $\sum\limits_{i,j=1}^nA_{ij}$.

[问题2019A08]  (1) 请用摄动法和初等变换法证明: $n$ 阶上三角阵 $A$ 的伴随阵 $A^*$ 也是上三角阵.

(2) 请用复旦高代教材第 130 页的习题 7 证明第 131 页的命题 3.5.1: 若向量组 $S$ 至少包含一个非零向量, 则 $S$ 必存在极大无关组.

(3) 请用形式行向量和相抵标准型理论证明复旦高代教材第 131 页的引理 3.5.1.

[问题2019A09]  设 $A$ 为数域 $K$ 上的 2 阶方阵, 试求 $C(A)=\{X\in M_2(K)\mid AX=XA\}$.

提示  对任意的 $\alpha\in K^2$, 考虑 $A\alpha$ 与 $\alpha$ 之间的线性关系.

[问题2019A10]  求下列数域 $K$ 上线性空间 $V_1,V_2,V_3$ 的维数和一组基 (表示为基础矩阵的线性组合):

(1) $V_1=\{X\in M_{2n}(K)\mid X'J+JX=0\}$, 其中 $J=\begin{pmatrix} 0 & I_n \\ -I_n & 0 \\ \end{pmatrix}$;

(2) $V_2=\{X\in M_{2n+1}(K)\mid X'M+MX=0\}$, 其中 $M=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & I_n \\ 0 & I_n & 0 \\ \end{pmatrix}$;

(3) $V_3=\{X\in M_{2n}(K)\mid X'N+NX=0\}$, 其中 $N=\begin{pmatrix} 0 & I_n \\ I_n & 0 \\ \end{pmatrix}$.

[问题2019A11]  设 $A$ 为 $n\,(n\geq 3)$ 阶可逆实对称阵, 且 $A$ 的所有 $n-1$ 阶主子式都是零. 证明: $A$ 必有一个非零的 $n-2$ 阶主子式, 且所有非零的 $n-2$ 阶主子式都与 $|A|$ 反号.

[问题2019A12]  设 $A,B$ 均为数域 $K$ 上的 $m\times n$ 阶矩阵, 线性映射 $\varphi:M_{n\times m}(K)\to M_{m\times n}(K)$ 定义为 $\varphi(X)=AXB$.

(1) 证明: 若 $m\neq n$, 则 $\varphi$ 不是线性同构;

(2) 试求 $\mathrm{Ker}\varphi$ 的维数和一组基.

[问题2019A13]  (1) 设 $V$ 是数域 $K$ 上的 $n$ 维线性空间, $f:V\to K$ 是线性函数, $0\neq v\in V$. 定义映射 $\varphi_{f,v}:V\to V$ 为 $\varphi_{f,v}(\alpha)=\alpha+f(\alpha)\cdot v$, 证明: $\varphi_{f,v}$ 是 $V$ 上的线性变换 (称为初等线性变换).

(2) 设 $\varphi$ 是 $n$ 维线性空间 $V$ 上的线性变换, 证明: $\varphi$ 是可逆初等线性变换的充要条件是 $\varphi$ 在 $V$ 的某组基下的表示矩阵是初等阵.

[问题2019A14]  设 $A$ 为数域 $K$ 上的 $n$ 阶方阵, 满足 $\mathrm{tr}(A)=0$, 证明: $A$ 相似于一个主对角元全为 0 的矩阵.

提示  对任意的 $\alpha\in K^n$, 考虑 $A\alpha$ 与 $\alpha$ 之间的线性关系, 并对阶数进行归纳.

复旦高等代数I(19级)每周一题的更多相关文章

  1. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  2. 复旦高等代数 II(17级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...

  3. 复旦高等代数II(18级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...

  4. 复旦高等代数 I(17级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第二教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1-2道思考题,供大家思考和解答.每周一题通过“谢启鸿高 ...

  5. 复旦高等代数 I(16级)每周一题

    每周一题的说明 一.本学期高代I的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家: ...

  6. 复旦高等代数II(16级)每周一题

    每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...

  7. Good Vegetable 4级算法题 分值: [320/3120] 问题: [8/78]

    1523 非回文 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个字符串是非回文的,当且仅当,他只由前p个小写字母 ...

  8. 51nod图论题解(4级,5级算法题)

    51nod图论题解(4级,5级算法题) 1805 小树 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 她发现她的树的点上都有一个标号(从1到n),这些树都在空 ...

  9. CDOJ 1277 智商杯考试 每周一题 div2 二分+数学

    智商杯考试 题目连接: http://acm.uestc.edu.cn/#/problem/show/1277 Description 你是一个挂科选手. 你现在正在考试,你很方. 你参加的考试叫做智 ...

随机推荐

  1. SAP T CODE : Description (Program)

    SAP T CODE : Description (Program) V : Quickstart RKCOWUSL (RKCOWUSL)V+01 : Create Sales Call (SAPMV ...

  2. SSRS连接ORACLE数据库制作报表

    SSRS报表基于ORACLE数据库做报表示例. 开发环境:VS2010 SQL SERVER 数据库:SQL SERVER 2012 PS:数据库连接部分可能有还有个问题就是ORACLE数据源这一部分 ...

  3. [C++] 初始化 vs 赋值

  4. Java IO---缓冲流和转换流

    一. 缓冲流 ​ 缓冲流是处理流的一种,也叫高效流,是对4个基本输入输出流的增强,它让输入输出流具有1个缓冲区,能显著减小与外部的IO次数,从而提高读写的效率,并且提供了一些额外的读写方法. ​ 因为 ...

  5. 英语bitellos钻石bitellos单词

    大颗粒的钻石叫做bitellos,四大钻石指的就是“摄政王”.“南非之星”.“蓝色希望”和“光明之山”四颗钻石.经过琢磨的钻石光彩夺目.灿烂无比,历来被誉为“宝石之王”,科研领域里大颗粒的钻石叫做bi ...

  6. elasticsearch 连接查询 基于es5.1.1

    ElasticSerch 的连接查询有两种方式实现 nested parent和child关联查询 nested 存储结构 nested的方式和其他字段一样,在同一个type里面存储,以数组的方式存储 ...

  7. JavaScript数值和字符串、特殊字符

    一.JavaScript数值 1.整数和浮点数 根据国际标准 IEEE 754,64 位浮点数格式的 64 个二进制位中,第0 位到第 51 位储存有效数字部分,第 52 到第 62 位储存指数部分, ...

  8. 【转】STM32利用FATFS读写数组

    因为存为TXT可以实现,但是读取TXT里边的数据总是不尽如人意,所以,最终存为bin文件了. 先摘几个观点: http://www.openedv.com/posts/list/36712.htm “ ...

  9. 详解CentOS6.7部署Tomcat及主配置文件

    Java程序实现部署及应用 POSIX :可移植操作系统,编程操作系统接口规范,实现跨平台编译运行. API:应用程序编程接口 ABI:应用程序二进制接口 描述了应用程序和操作系统之间,一个应用和它的 ...

  10. Socket网络编程-TCP编程

    Socket网络编程-TCP编程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.socket介绍 1>.TCP/IP协议 2>.跨网络的主机间通讯 在建立通信连接的 ...