复旦高等代数I(19级)每周一题
本学期的高等代数每周一题活动计划从第2教学周开始,到第15教学周结束,每周的周末公布一道思考题(共14道,思考题一般与下周授课内容密切相关),供大家思考和解答。每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代数在线课程19级课群”(以课群话题的形式)这两个渠道同时发布。有兴趣的同学可以将每周一题的解答写在纸上、拍成图片,并上传到每周一题对应的课群话题中。本人会定期对每周一题的解答进行批改和评价,并将优秀解答标记出来推荐给全班同学。
[问题2019A01] 请用教材第1章“行列式”中的方法求出下列 $n$ 阶行列式的值 (注意: 不能使用教材第2章“矩阵”中的“矩阵乘法”、“Cauchy-Binet公式”和“降阶公式”等方法):
(1) $|A|=\begin{vmatrix} 2a_1 & a_1+a_2 & \cdots & a_1+a_n \\ a_2+a_1 & 2a_2 & \cdots & a_2+a_n \\ \vdots & \vdots & & \vdots \\ a_n+a_1 & a_n+a_2 & \cdots & 2a_n \\ \end{vmatrix}$,
(2) $|B|=\begin{vmatrix} 0 & a_1+a_2 & \cdots & a_1+a_n \\ a_2+a_1 & 0 & \cdots & a_2+a_n \\ \vdots & \vdots & & \vdots \\ a_n+a_1 & a_n+a_2 & \cdots & 0 \\ \end{vmatrix}$.
[问题2019A02] 设 2019 阶行列式 $$|A|=\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{2018} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{2018} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{2019} & x_{2019}^2 & \cdots & x_{2019}^{2018} \\ \end{vmatrix}.$$ 设 $|A|$ 的代数余子式分别为 $A_{ij}\,(1\leq i,j\leq 2019)$, 试求 $\sum\limits_{i,j=1}^{2019}(x_i^{2019}+j^{70})A_{ij}$.
[问题2019A03] 有限集合 $T$ 到自身上的一个双射 (即既单又满的映射) 称为 $T$ 上的一个置换 (Permutation), 集合 $S=\{1,2,\dots,n\}$ 的全体置换构成的集合记为 $S_n$. 对任一 $\sigma\in S_n$, $(\sigma(1),\sigma(2),\dots,\sigma(n))$ 是 $S$ 的一个全排列; 反之, 对 $S$ 的任一全排列 $(k_1,k_2,\dots,k_n)$, 定义 $\sigma(i)=k_i\,(\forall\,1\leq i\leq n)$, 则 $\sigma$ 是 $S$ 的一个置换. 因此, 我们可以把 $S$ 的置换和全排列等同起来.
设 $\sigma,\tau\in S_n$, $\tau$ 与 $\sigma$ 的乘积 $\tau\sigma$ 定义为 $\tau\sigma(i)=\tau(\sigma(i))\,(\forall\,1\leq i\leq n)$ (其实就是映射的复合), 容易验证 $\tau\sigma\in S_n$ 且乘法满足结合律. 设 $e:S\to S$ 为恒等映射, 即 $e(i)=i\,(\forall\,1\leq i\leq n)$, 则 $e\in S_n$. 因为 $\sigma:S\to S$ 是双射, 所以其逆映射 $\sigma^{-1}:S\to S$ 也是双射, 即 $\sigma^{-1}\in S_n$, 并且满足 $\sigma^{-1}\sigma=\sigma\sigma^{-1}=e$ (以上事实说明: $n$ 阶置换全体 $S_n$ 构成一个群, 称为 $n$ 阶对称群).
设 $e_1,e_2,\dots,e_n$ 是 $n$ 维标准单位列向量 (定义见高代教材第 109 页复习题 1), $\sigma\in S_n$, 定义矩阵 $$P_\sigma=(e_{\sigma(1)},e_{\sigma(2)},\dots,e_{\sigma(n)}),$$ 称为相伴于置换 $\sigma$ 的 $n$ 阶置换矩阵. 置换矩阵的等价定义是: $n$ 阶方阵 $P$ 的每行每列只有一个元素非零, 并且那些非零元素都等于 1. 设 $A$ 为 $n$ 阶方阵, $\sigma,\tau\in S_n$, 试证明以下结论 (第 3 小问说明: $n$ 阶置换矩阵全体 $\mathcal{P}_n$ 构成一个群, 它是 $n$ 阶正交群 $O(n)$ 的子群, 并且 $P:S_n\to\mathcal{P}_n$, $\sigma\mapsto P_\sigma$, 是一个群同构):
(1) 第一类初等矩阵 $P_{ij}$ (定义见高代教材第 84 页), 基础循环矩阵 $J$ (定义见高代白皮书第 56 页的例 2.1) 和反单位阵 (定义见高代教材第 323 页第 5 行最右端的矩阵) 都是置换矩阵.
(2) $|P_\sigma|=(-1)^{N(\sigma)}$, 其中 $N(\sigma)$ 是 $\sigma$ 作为全排列的逆序数.
(3) $P_{\tau\sigma}=P_\tau P_\sigma$, $P_e=I_n$, $P_{\sigma^{-1}}=P_\sigma^{-1}=P_\sigma'$.
(4) $AP_\sigma$ 的列向量是 $A$ 的列向量的一个置换, 即 $AP_\sigma$ 的第 $i$ 列是 $A$ 的第 $\sigma(i)$ 列; $P_\sigma'A$ 的行向量是 $A$ 的行向量的一个置换, 即 $P_\sigma'A$ 的第 $i$ 行是 $A$ 的第 $\sigma(i)$ 行.
[问题2019A04] 试求
(1) 与全体循环矩阵 (定义见高代白皮书第 59 页的例 2.12) 都乘法可交换的所有的 $n$ 阶方阵.
(2) 与全体置换矩阵 $\{P_\sigma,\,\sigma\in S_n\}$ 都乘法可交换的所有的 $n$ 阶方阵.
[问题2019A05] 求下列 $n$ 阶方阵的行列式 (第四行的 $\cdots$ 表示平移, 其余空白处元素都为零):
$$\begin{pmatrix} a^2\!+\!bc & 2ab & b^2 & & & & & & & & \\ 2ac & a^2\!+\!2bc & 2ab & b^2 & & & & & & & \\ c^2 & 2ac & a^2\!+\!2bc & 2ab & b^2 & & & & & & \\ & & & & & \cdots & & & & & \\ & & & & & & c^2 & 2ac & a^2\!+\!2bc & 2ab & b^2 \\ & & & & & & & c^2 & 2ac & a^2\!+\!2bc & 2ab \\ & & & & & & & & c^2 & 2ac & a^2\!+\!bc \\ \end{pmatrix}.$$
[问题2019A06] 证明: $n$ 阶非异阵 $A$ 仅通过第三类初等行变换就可变为 $\mathrm{diag}\{1,\cdots,1,|A|\}$.
注 本题是白皮书例 2.34 的推广.
[问题2019A07] 设循环矩阵 $$A=\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ n & 1 & 2 & \cdots & n-1 \\ n-1 & n & 1 & \cdots & n-2 \\ \vdots & \vdots & \vdots & & \vdots \\ 2 & 3 & 4 & \cdots & 1 \\ \end{pmatrix}.$$
(1) 请用白皮书例 2.52 的结论计算 $|A|$, 并与白皮书例 1.21 (行列式求和法) 的结果进行比较.
(2) 设 $A_{ij}$ 是 $A$ 的第 $(i,j)$ 元素的代数余子式, 求 $\sum\limits_{i,j=1}^nA_{ij}$.
[问题2019A08] (1) 请用摄动法和初等变换法证明: $n$ 阶上三角阵 $A$ 的伴随阵 $A^*$ 也是上三角阵.
(2) 请用复旦高代教材第 130 页的习题 7 证明第 131 页的命题 3.5.1: 若向量组 $S$ 至少包含一个非零向量, 则 $S$ 必存在极大无关组.
(3) 请用形式行向量和相抵标准型理论证明复旦高代教材第 131 页的引理 3.5.1.
[问题2019A09] 设 $A$ 为数域 $K$ 上的 2 阶方阵, 试求 $C(A)=\{X\in M_2(K)\mid AX=XA\}$.
提示 对任意的 $\alpha\in K^2$, 考虑 $A\alpha$ 与 $\alpha$ 之间的线性关系.
[问题2019A10] 求下列数域 $K$ 上线性空间 $V_1,V_2,V_3$ 的维数和一组基 (表示为基础矩阵的线性组合):
(1) $V_1=\{X\in M_{2n}(K)\mid X'J+JX=0\}$, 其中 $J=\begin{pmatrix} 0 & I_n \\ -I_n & 0 \\ \end{pmatrix}$;
(2) $V_2=\{X\in M_{2n+1}(K)\mid X'M+MX=0\}$, 其中 $M=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & I_n \\ 0 & I_n & 0 \\ \end{pmatrix}$;
(3) $V_3=\{X\in M_{2n}(K)\mid X'N+NX=0\}$, 其中 $N=\begin{pmatrix} 0 & I_n \\ I_n & 0 \\ \end{pmatrix}$.
[问题2019A11] 设 $A$ 为 $n\,(n\geq 3)$ 阶可逆实对称阵, 且 $A$ 的所有 $n-1$ 阶主子式都是零. 证明: $A$ 必有一个非零的 $n-2$ 阶主子式, 且所有非零的 $n-2$ 阶主子式都与 $|A|$ 反号.
[问题2019A12] 设 $A,B$ 均为数域 $K$ 上的 $m\times n$ 阶矩阵, 线性映射 $\varphi:M_{n\times m}(K)\to M_{m\times n}(K)$ 定义为 $\varphi(X)=AXB$.
(1) 证明: 若 $m\neq n$, 则 $\varphi$ 不是线性同构;
(2) 试求 $\mathrm{Ker}\varphi$ 的维数和一组基.
[问题2019A13] (1) 设 $V$ 是数域 $K$ 上的 $n$ 维线性空间, $f:V\to K$ 是线性函数, $0\neq v\in V$. 定义映射 $\varphi_{f,v}:V\to V$ 为 $\varphi_{f,v}(\alpha)=\alpha+f(\alpha)\cdot v$, 证明: $\varphi_{f,v}$ 是 $V$ 上的线性变换 (称为初等线性变换).
(2) 设 $\varphi$ 是 $n$ 维线性空间 $V$ 上的线性变换, 证明: $\varphi$ 是可逆初等线性变换的充要条件是 $\varphi$ 在 $V$ 的某组基下的表示矩阵是初等阵.
[问题2019A14] 设 $A$ 为数域 $K$ 上的 $n$ 阶方阵, 满足 $\mathrm{tr}(A)=0$, 证明: $A$ 相似于一个主对角元全为 0 的矩阵.
提示 对任意的 $\alpha\in K^n$, 考虑 $A\alpha$ 与 $\alpha$ 之间的线性关系, 并对阶数进行归纳.
复旦高等代数I(19级)每周一题的更多相关文章
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 复旦高等代数 II(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...
- 复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...
- 复旦高等代数 I(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第二教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1-2道思考题,供大家思考和解答.每周一题通过“谢启鸿高 ...
- 复旦高等代数 I(16级)每周一题
每周一题的说明 一.本学期高代I的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家: ...
- 复旦高等代数II(16级)每周一题
每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...
- Good Vegetable 4级算法题 分值: [320/3120] 问题: [8/78]
1523 非回文 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个字符串是非回文的,当且仅当,他只由前p个小写字母 ...
- 51nod图论题解(4级,5级算法题)
51nod图论题解(4级,5级算法题) 1805 小树 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 她发现她的树的点上都有一个标号(从1到n),这些树都在空 ...
- CDOJ 1277 智商杯考试 每周一题 div2 二分+数学
智商杯考试 题目连接: http://acm.uestc.edu.cn/#/problem/show/1277 Description 你是一个挂科选手. 你现在正在考试,你很方. 你参加的考试叫做智 ...
随机推荐
- K8S学习笔记之K8S日志搜集实战
详细参考这篇文章,几乎覆盖了了K8S的各种日志搜集方案 https://juejin.im/post/5b6eaef96fb9a04fa25a0d37#heading-8
- C# vb .NET读取识别条形码线性条码EAN-13
EAN-13是比较常见的条形码编码规则类型的一种.如何在C#,vb等.NET平台语言里实现快速准确读取该类型条形码呢?答案是使用SharpBarcode! SharpBarcode是C#快速高效.准确 ...
- Vue事件修饰符,.capture关键字详解
.prevent 用于阻止默认事件,点击a标签href可以打开相应的链接,那么给事件加 上此关键字,click.prevent .capture 冒泡顺序 例如 div1中嵌套div2中嵌 ...
- css中absolute设置问题和如何让div居中
今天设置多个div到页面正中间的时候,在第一层<div class="map">中设置如下: .map{ position:absolute: top:50%; lef ...
- JS this指向总结
使用 JavaScript 开发的时候,很多开发者多多少少会被 this 的指向搞蒙圈,但是实际上,关于 this 的指向,记住最核心的一句话:哪个对象调用函数,函数里面的this指向哪个对象. 下面 ...
- 学校老师没重点讲的C语言
格式说明由“%”和格式字符组成,如%d%f等.它的作用是将输出的数据转换为指定的格式输出.格式说明总是由“%”字符开始的.不同类型的数据用不同的格式字符. 格式字符有d,o,x,u,c,s,f,e,g ...
- springboot 打包太大,打包瘦身,打包thin
pom文件修改: <build> <resources> <resource> <directory>src/main/resources</di ...
- HDFS 配额教程
本文原始地址:https://sitoi.cn/posts/12544.html 名称配额(Name Quota) 名称配额是在对应的目录下所有文件和目录名称的数量上的限制. 当超过这个配额的时候,文 ...
- Socket网络编程-UDP编程
Socket网络编程-UDP编程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.UDP编程概述 1>.UDP服务端编程流程 创建socket对象.socket.SOCK_ ...
- lua redis接口 (在ubuntu16.04 环境下配置lua-redis开发环境)
目前成功的lua版本是5.1, 根据网络上的资料显示 lua5.1能够支持 lua-socket 安装lua及相关软件: #安装lua5. #安装lua-socketxiangg sudo apt i ...