题目链接懒得放了。

题目大意懒得写了。

省选原题哪有找不到的……


说实话,其实这题是个大水题,被我十秒钟内口胡出来了。

首先位运算除了拆位还能干啥?以下以与为例,或是差不多的。

我们考虑有多少个子矩阵会对这一位答案产生贡献,其实就是全 $1$ 的子矩阵。

问题转化为计算全 $1$ 子矩阵的个数。

这是一个简单题。考虑枚举右下角,发现包括这个右下角的子矩阵肯定长这样:(画的比较丑,意会就好了)

也就是高度单调递增。

高度可以做到 $O(1)$ 转移(从 $h[i-1][j]$)转移。

至于递增的高度,直接一个单调栈。(设为 $s$)

那么这个点为右下角的矩阵个数为 $(s_1-s_0)h[i][s_1]+(s_2-s_1)h[i][s_2]+\cdots+(s_{top}-s_{top-1})h[i][s_{top}]$。这个也可以入出栈时随便更新一下。

时间复杂度 $O(n^2\log a_i)$。

(然而一开始式子推错了,调了好久,回来再看看发现自己就是个sb……)

#include<bits/stdc++.h>
using namespace std;
const int maxn=,mod=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,a[maxn][maxn],b[maxn][maxn],ans1,ans2,h[maxn],stk[maxn],tp,sum;
int calc1(){
int ans=;
MEM(h,);
FOR(i,,n){
MEM(stk,);tp=sum=;
FOR(j,,n) h[j]=b[i][j]?h[j]+:;
FOR(j,,n){
while(tp && h[j]<h[stk[tp]]){
sum=(sum-1ll*h[stk[tp]]*(stk[tp]-stk[tp-])%mod+mod)%mod;
tp--;
}
stk[++tp]=j;
sum=(sum+1ll*h[stk[tp]]*(stk[tp]-stk[tp-]))%mod;
ans=(ans+sum)%mod;
}
}
return ans;
}
int calc2(){
int ans=;
MEM(h,);
FOR(i,,n){
MEM(stk,);tp=sum=;
FOR(j,,n) h[j]=b[i][j]?:h[j]+;
FOR(j,,n){
while(tp && h[j]<h[stk[tp]]){
sum=(sum-1ll*h[stk[tp]]*(stk[tp]-stk[tp-])%mod+mod)%mod;
tp--;
}
stk[++tp]=j;
sum=(sum+1ll*h[stk[tp]]*(stk[tp]-stk[tp-]))%mod;
ans=(ans+sum)%mod;
}
}
int tot=1ll*n*(n+)*n*(n+)/%mod;
return (tot-ans+mod)%mod;
}
int main(){
n=read();
FOR(i,,n) FOR(j,,n) a[i][j]=read();
FOR(_,,){
FOR(i,,n) FOR(j,,n) b[i][j]=(a[i][j]>>_)&;
ans1=(ans1+1ll*calc1()*(<<_))%mod;
ans2=(ans2+1ll*calc2()*(<<_))%mod;
}
printf("%d %d\n",ans1,ans2);
}

[GXOI/GZOI2019]与或和(位运算,单调栈)的更多相关文章

  1. LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位

    #3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...

  2. 「洛谷5300」「GXOI/GZOI2019」与或和【单调栈+二进制转化】

    题目链接 [洛谷传送门] 题解 按位处理. 把每一位对应的图都处理出来 然后单调栈处理一下就好了. \(and\)操作处理全\(1\). \(or\)操作处理全\(0\). 代码 #include & ...

  3. LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)

    题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...

  4. [GX/GZOI2019]与或和(单调栈+按位运算)

    首先看到与或,很显然想到按照位拆分运算.然后就变成了0/1矩阵,要使矩阵在当前位与为1,则矩阵全为1,如果是或为1,则是矩阵不全为0,然后求全为0/1的矩阵个数即可.记录c[i][j]表示以a[i][ ...

  5. [LOJ3083][GXOI/GZOI2019]与或和——单调栈

    题目链接: [GXOI/GZOI2019]与或和 既然求的是二进制运算的和,那么我们按位考虑,这样就将矩阵变成了一个$01$矩阵. 对于或运算,就是求有多少个子矩形中有$1$. 直接求不好办,考虑有多 ...

  6. 【BZOJ5502】[GXOI/GZOI2019]与或和(单调栈)

    [BZOJ5502][GXOI/GZOI2019]与或和(单调栈) 题面 BZOJ 洛谷 题解 看到位运算就直接拆位,于是问题变成了求有多少个全\(0\)子矩阵和有多少个全\(1\)子矩阵. 这两个操 ...

  7. 洛谷.5300.[GXOI/GZOI2019]与或和(单调栈)

    LOJ BZOJ 洛谷 想了一个奇葩的单调栈,算的时候要在中间取\(\min\),感觉不靠谱不写了=-= 调了十分钟发现输出没取模=v= BZOJ好逗逼啊 题面连pdf都不挂了 哈哈哈哈 枚举每一位. ...

  8. [GXOI/GZOI2019]与或和(单调栈)

    想了想决定把这几题也随便水个解题报告... bzoj  luogu 思路: 首先肯定得拆成二进制30位啊 此后每一位的就是个01矩阵 Q1就是全是1的矩阵个数 Q2就是总矩阵个数减去全是0的矩阵个数 ...

  9. P5300 [GXOI/GZOI2019]与或和

    题目地址:P5300 [GXOI/GZOI2019]与或和 考虑按位计算贡献 对于 AND 运算,只有全 \(1\) 子矩阵才会有贡献 对于 OR 运算,所以非全 \(0\) 子矩阵均有贡献 如果求一 ...

随机推荐

  1. Java for循环每次都通过list.size()和 string.length()获取大小是否消耗性能?

    前言 有人说在for循环之前用一个局部变量先获取到list.size().str.length(),然后在for循环的判断条件里通过这个局部变量替换list.size().str.length()会节 ...

  2. 基于贝叶斯网(Bayes Netword)图模型的应用实践初探

    1. 贝叶斯网理论部分 笔者在另一篇文章中对贝叶斯网的理论部分进行了总结,在本文中,我们重点关注其在具体场景里的应用. 2. 从概率预测问题说起 0x1:条件概率预测模型之困 我们知道,朴素贝叶斯分类 ...

  3. “sgen.exe”未能运行。文件名或扩展名太长

    问题 创建项目后无法运行 严重性 代码 说明 项目 文件 行 禁止显示状态 错误 MSB6003 指定的任务可执行文件"sgen.exe"未能运行.System.Component ...

  4. .Net Core 学习路线图

    今天看  草根专栏 这位大牛的微信公众号,上面分享了一张来自github的.net core学习路线图,贴在这里,好让自己学习有个方向,这么一大页竟然只是初级到高级的,我的个乖乖,太恐怖了. 感谢大牛 ...

  5. UNION ALL \UNION

    (一)UNION ALL \UNION 的用法和区别   UNION UNION    ALL 用途   用于使用SELECT语句组合两个或多个表的结果集. 用于使用SELECT语句组合两个或多个表的 ...

  6. sql server: 数据库备份时出现-operating-system-error-5拒绝访问

    本文转自:https://blog.csdn.net/ibsfn/article/details/80770855 sql-server 数据库备份时出现-operating-system-error ...

  7. 分享几套2019年各大公司最新的PHP面试题,几斤几两一试便知

    从面试题发现不足,进而查漏补缺,比通过面试更难得 PHP面试题2019年奇虎360面试题和答案解析 PHP面试题2019年京东工程师面试题和答案解析 PHP面试题2019年新浪工程师面试题和答案解析 ...

  8. Linux下Mysql5.7忘记密码

    一.问题 linux下的mysql5.7忘记密码 二.解决 第一步:打开mysql5.7的配置文件my.cnf,并在里面增加一行:skip-grant-tables   保存并退出(:wq) [roo ...

  9. android studio学习----如何创建一个库项目

    首先,打开Android studio的软件工具,进入到界面中点击菜单的“file”选项. 2 在弹出的下拉的菜单中,可以看到的是为"New Module“的选项点击进入.   3 进入到c ...

  10. 批量处理txt文本文件到Excel文件中去----java

    首发地址:http://blog.csdn.net/u014737138/article/details/38120403 不多说了 直接看代码: 下面的FileFind类首先是找到文件夹下面所有的t ...