学习参考:

Dijkstra算法(单源最短路径)

最短路径—Dijkstra算法和Floyd算法

使用的图结构:

邻接矩阵:

-1 20 -1 25 80
-1 -1 40 -1 -1
-1 -1 -1 -1 10
-1 -1 20 -1 50
-1 -1 -1 -1 -1

代码:

     void Dijkstra(){//单源点最短路径
int i,j;
boolean s[]=new boolean[vexnum];
int dist[]=new int[vexnum];
int prev[]=new int[vexnum];
int v=0;
for(i=0;i<vexnum;i++){
dist[i]=adjMatrix[v][i];
s[i]=false;
if(dist[i]>0){
prev[i]=v;
}else{
prev[i]=-1;
}
}
dist[v]=0;
s[v]=true;
for(i=1;i<vexnum;i++){
int u=v;
int min=0x7FFFFFFF;
for(j=0;j<vexnum;j++){//把dist中的最小值加入S
if(s[j]==false && (dist[j]<min) && dist[j]!=-1){//j不在s中 ,j比最小值小
u=j;
min=dist[j];
}
}
s[u]=true;//结点u加入S中
//利用结点u更新dist
for(j=0;j<vexnum;j++){
if(s[j]==false && adjMatrix[u][j]!=-1){//j不在s中,并且u->j连通
int newdist=dist[u]+adjMatrix[u][j];//v->u + u->j
if(newdist<dist[j] || dist[j]==-1){
dist[j]=newdist;
prev[j]=u;
}
}
}
}
//-1 0 3 0 2
for(i=1;i<vexnum;i++){
System.out.print(i);
int t=prev[i];
while(t!=-1){
System.out.print("<--"+t);
t=prev[t];
}
System.out.println();
}
}

输出:

1<--0
2<--3<--0
3<--0
4<--2<--3<--0

另外一个测试数据:

可视化图结构:

邻接矩阵:

-1 -1 10 -1 30 100
-1 -1 5 -1 -1 -1
-1 -1 -1 50 -1 -1
-1 -1 -1 -1 -1 10
-1 -1 -1 20 -1 60
-1 -1 -1 -1 -1 -1

输出:

1
2<--0
3<--4<--0
4<--0
5<--3<--4<--0

Dijkstra单源点最短路径算法的更多相关文章

  1. Dijkstra 单源最短路径算法

    Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年 ...

  2. 【模板 && 拓扑】 Dijkstra 单源最短路径算法

    话不多说上代码 链式前向星233 #include<bits/stdc++.h> using namespace std; ,_max=0x3fffffff; //链式前向星 struct ...

  3. Bellman-Ford 单源最短路径算法

    Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...

  4. Dijkstra——单源最短路径

    算法思想 ①从一个源点开始,找距离它最近的点顶点v ②然后以顶点v为起点,去找v能到达的顶点w,即v的邻居 比较源点直接到 v的距离和(源点到v的距离+v到w的距离) 若大于后者则更新源点的到w的开销 ...

  5. 单源点最短路径的Dijkstra算法

    在带权图(网)里,点A到点B所有路径中边的权值之和为最短的那一条路径,称为A,B两点之间的最短路径;并称路径上的第一个顶点为源点(Source),最后一个顶点为终点(Destination).在无权图 ...

  6. Bellman-Ford & SPFA 算法——求解单源点最短路径问题

    Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好 ...

  7. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(一)

    一.算法介绍 迪杰斯特拉算法(英语:Dijkstra's algorithm)由荷兰计算机科学家艾兹赫尔·迪杰斯特拉在1956年提出.迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题. ...

  8. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(二)

    一.基于邻接表的Dijkstra算法 如前一篇文章所述,在 Dijkstra 的算法中,维护了两组,一组包含已经包含在最短路径树中的顶点列表,另一组包含尚未包含的顶点.使用邻接表表示,可以使用 BFS ...

  9. 经典贪心算法(哈夫曼算法,Dijstra单源最短路径算法,最小费用最大流)

    哈夫曼编码与哈夫曼算法 哈弗曼编码的目的是,如何用更短的bit来编码数据. 通过变长编码压缩编码长度.我们知道普通的编码都是定长的,比如常用的ASCII编码,每个字符都是8个bit.但在很多情况下,数 ...

随机推荐

  1. vertica ROS和WOS错误

    频繁写入vertica,可能导致ROS和WOS错误.如下: java.sql.SQLTransientException: [Vertica][VJDBC](5065) ERROR: Too many ...

  2. 召唤神龙Ladon强化Cobalt Strike

    Ladon5.5 20191109 wiki update 20191114 前言 Ladon 5.5支持Cobalt Strike,内置39个功能模块 加载脚本K8Ladon.cna,通过Ladon ...

  3. POSIX 正则表达式 BRE与ERE的差异

    BRE,标准正则表达式,basic regular expressions ERE,扩展正则表达式,Extended Regular Expressions POSIX 正则表达式 传统上,POSIX ...

  4. PHP 垃圾回收机制详解

    前言:之前对PHP的GC只是了解了个大概,这次详细了解下PHP的垃圾回收机制(GC). 介于网上大部分都是PHP5.X的GC,虽然 php5 到 php7 GC部分做出的改动较小,但我觉得还是一起写下 ...

  5. 第一个APP上架IOS审核相关的记录

    以前一直没做过APP开发,第一版是用WAP版做的,采用了light7框架制作,没有UI设计. 升级到第二版之后,使用了HBUILDER的方式开发,https://dcloud.io/ 官方在这里. 目 ...

  6. 使用XSSFWorkbook 读取excel

    工作中用到 使用XSSFWorkbook 读取excel 具体代码如下, private (List<(string columnName, string colomnDescription)& ...

  7. 关于Ext checkboxfiled 获取值为 on的解决办法

    今天在做Ext checkboxfield 为取值为on,应该是true或false,解决办法是把Name去掉,只设置ID即可 { xtype: "container", layo ...

  8. 一次U9身份验证http数据对接

    一般情况下传输和回传HTTP协议就搞定了,但这次不同,有身份验证,网上的资料相对较少,怎么办呢?.NET没有不代表JAVA没有,网上搜JAVA身份验证HTTP协议, 果然是有的,跟着代码改成相应的.N ...

  9. CLOS : Common Lisp 的面向对象支持

    1.  defclass   ( :accessor/reader/writer ;   :initarg  ;  :initform 2. defgeneric 3. defmethod ----- ...

  10. getOwnPropertyDescriptor

    语法 Object.getOwnPropertyDescriptor(obj, prop) 参数 obj 需要查找的目标对象 prop 目标对象内属性名称 返回值 如果指定的属性存在于对象上,则返回其 ...