[Luogu 3794]签到题IV
Description
给定长度为 \(n\) 的序列 \(A\)。求有多少子段 \([l,r]\) 满足
\[
\left(\gcd_{l\leq i\leq r}A_i\right) \oplus\left(\bigcup_{l\leq i\leq r}A_i\right)=k
\]
其中 \(\oplus\) 表示按位异或,\(\cup\) 表示按位或。
\(1\leq n,A_i\leq 500000\)
Solution
这道题和[JSOI 2015]最大公约数一样啊。
可知,一个确定的右端点,其左端点随便取,\(\gcd\) 和按位或是不超过 \(\log\) 种的。
直接存下不同的值及其对应的最左端点。总复杂度为 \(O(n\log^2 A_i)\)。
Code
#include <bits/stdc++.h>
#define ll long long
#define pii pair<int, int>
#define fr first
#define sc second
#define pb push_back
using namespace std;
const int N = 500000+5;
int n, K, a[N];
vector<pii > g[N], o[N];
pii tg, to;
ll ans;
int gcd(int a, int b) {return b ? gcd(b, a%b) : a; }
int main() {
scanf("%d%d", &n, &K);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= n; i++) {
int szg = g[i-1].size(), szo = o[i-1].size(), j = 0, k = 0, cg = 0, co = 0;
g[i-1].pb(pii(0, i)), o[i-1].pb(pii(0, i));
while (j < szg && k < szo) {
tg = g[i-1][j], to = o[i-1][k];
tg.fr = gcd(a[i], tg.fr);
to.fr = (a[i]|to.fr);
if ((tg.fr^to.fr) == K) ans += min(g[i-1][j+1].sc, o[i-1][k+1].sc)-max(tg.sc, to.sc);
if (cg == 0 || tg.fr != g[i][cg-1].fr) g[i].pb(tg), ++cg;
if (co == 0 || to.fr != o[i][co-1].fr) o[i].pb(to), ++co;
if (g[i-1][j+1].sc == o[i-1][k+1].sc) ++j, ++k;
else if (g[i-1][j+1].sc < o[i-1][k+1].sc) ++j;
else ++k;
}
tg = pii(a[i], i), to = pii(a[i], i);
if ((tg.fr^to.fr) == K) ans++;
if (cg == 0 || tg.fr != g[i][cg-1].fr) g[i].pb(tg), ++cg;
if (co == 0 || to.fr != o[i][co-1].fr) o[i].pb(to), ++co;
}
printf("%lld\n", ans);
return 0;
}
[Luogu 3794]签到题IV的更多相关文章
- 洛谷3794 签到题IV
题目描述 给定一个长度为n的序列$a_1,a_2...a_n$,其中每个数都是正整数. 你需要找出有多少对(i,j),$1 \leq i \leq j \leq n$且$gcd(a_i,a_{i+1} ...
- P3794 签到题IV
题目 P3794 签到题IV 来切道水题放松一下吧 做法 或是单调不下降的,\(gcd\)是单调不上升的 \(a_i≤5×10^5\)分成权值不同的块数应该很小,所以随便乱搞就出来了 My compl ...
- luogu P3601 签到题
链接P3601 签到题 求\[\sum_{i=l}^{r} i-\phi_i\] \(l,r\leq 10^{12},\ r-l\leq 10^6\) 杜教筛似乎做不了. 然后再看\(l\),\(r\ ...
- 洛谷3794:签到题IV——题解
https://www.luogu.org/problemnew/show/P3794 题目见上. 有一个套路(虽然我到现在还不会),就是固定一个端点,二分查右端点. 显然这题的正解是O(nlogn) ...
- [luogu3601]签到题
[luogu3601]签到题 luogu 求\[\sum_{i=l}^ri-\phi(i)\] 一个朴素的想法是枚举l~r,根号求\(\phi\),显然这样是\((r-l)\sqrt r\),时间无法 ...
- A 洛谷 P3601 签到题 [欧拉函数 质因子分解]
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...
- fjwc2019 D3T1 签到题 (贪心)
#184. 「2019冬令营提高组」签到题 每次询问接近O(1).......考虑贪心 怎么贪心呢? 对于相邻的两个数,我们要保证异或x后单调不降 我们找到两个数二进制上最高的相异位 当左边的数相异位 ...
- CTF-练习平台-WEB之 签到题
一.签到题 根据提示直接加群在群公告里就能找到~
- 洛谷P3601签到题(欧拉函数)
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...
随机推荐
- 浅谈SQL Server事务与锁(上篇)
一 概述 在数据库方面,对于非DBA的程序员来说,事务与锁是一大难点,针对该难点,本篇文章试图采用图文的方式来与大家一起探讨. “浅谈SQL Server 事务与锁”这个专题共分两篇,上篇主讲事务及 ...
- cookielib模块 for python3
python2 可以直接安装cookielib模块 而py3却不能安装 故需要安装http模块 举例子: from http import cookiejar cookie = cookiejar.C ...
- golang基础学习---log
package main import ( "log" ) func init() { log.SetPrefix("TRACE: ") log.SetFlag ...
- MOOC 数据库笔记(四):关系代数
关系代数 关系代数概述 特点 基于集合,提供了一系列的关系代数操作:并.差.笛卡尔积(广义积).选择.投影和更名等基本操作 以及交.连接和关系除等扩展操作,是一种集合思维的操作语言. 关系代数操作以一 ...
- Java ClassLoader 学习理解
/** * <html> * <body> * <P> Copyright 1994 JsonInternational</p> * <p> ...
- WebRTC 入门教程(二)| WebRTC信令控制与STUN/TURN服务器搭建
WebRTC 入门教程(二)| WebRTC信令控制与STUN/TURN服务器搭建 四月 4, 2019 作者:李超,音视频技术专家.本文首发于 RTC 开发者社区,欢迎在社区留言与作者交流. htt ...
- AWS成本估算的相关小工具
1.AWS-partner :云势数据做的在线小工具,有微信版本可以使用,但是涉及的服务很少,更新慢,型号缺,界面不友好.不是很理想,连接如下: https://www.goclouds.cn ...
- Filter DSL 常用语法 -- 基本查询语法,必会
转发自:https://www.cnblogs.com/ghj1976/p/5293250.html term 过滤 term主要用于精确匹配哪些值,比如数字,日期,布尔值或 not_analyzed ...
- javascript ~~ 符号是什么意思呢?
~ bitwise NOT 运算符 ~对操作数按位取反,两个的意思即作两次取反操作,其实是等作原数本身(操作数是32整数范围内) ~~(Math.random()*7) 即 var n = Math. ...
- session有效期设置的两种方式
/**session有效期设置的两种方式: * 1.代码设置:session.setMaxInactiveInterval(30);//单位:秒.30秒有效期,默认30分钟. * 2.web.xml中 ...