【后缀数组】【LuoguP4248】 [AHOI2013]差异
题目描述
给定一个长度为 n 的字符串 S,令 Ti 表示它从第 i 个字符开始的后缀。求
\(\sum_{1\le i <j\le n}len(T_i)+len(T_j)-2*lcp(T_i,T_j)\)
说明
对于 100% 的数据,保证 2⩽n⩽500000,且均为小写字母。
思路
注意到前面那个东西是个定值,所以关键在于如何求后面那个东西
由于 \(lcp(sa[l],sa[r])=min_{i=l+1}^{r}H[i]\)
所以后面那个东西实际上就是 \(H\) 数组的所有子区间 \(min\) 之和,当然是去掉 \(H[1]\) 之后
这个东西可以用单调栈通过维护后缀 \(min\) 来求
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 500010
#define INF 1000000000
#define ll long long
using namespace std;
int n;
char c[maxn];
int tax[maxn], rk[maxn], tp[maxn], sa[maxn], M = 200;
void rsort() {
for (int i = 0; i <= M; ++i) tax[i] = 0;
for (int i = 1; i <= n; ++i) ++tax[rk[i]];
for (int i = 1; i <= M; ++i) tax[i] += tax[i - 1];
for (int i = n; i; --i) sa[tax[rk[tp[i]]]--] = tp[i];
}
int c1, H[maxn];
void SA(char *s) {
for (int i = 1; i <= n; ++i) rk[i] = s[i], tp[i] = i; rsort();
for (int k = 1; k < n; k *= 2) {
if (c1 == n) break; M = c1; c1 = 0;
for (int i = n - k + 1; i <= n; ++i) tp[++c1] = i;
for (int i = 1; i <= n; ++i) if (sa[i] > k) tp[++c1] = sa[i] - k;
rsort(); swap(tp, rk); rk[sa[1]] = c1 = 1;
for (int i = 2; i <= n; ++i) {
if (tp[sa[i - 1]] != tp[sa[i]] || tp[sa[i - 1] + k] != tp[sa[i] + k]) ++c1;
rk[sa[i]] = c1;
}
} int lcp = 0;
for (int i = 1; i <= n; ++i) {
if (lcp) --lcp;
int j = sa[rk[i] - 1];
while (s[j + lcp] == s[i + lcp]) ++lcp;
H[rk[i]] = lcp;
}
}
int st[maxn], top;
ll ans, s;
int main() {
scanf("%s", c + 1); n = strlen(c + 1); SA(c); ans = (ll) n * (n - 1) / 2 * (n + 1);
for (int i = 1; i < n; ++i) H[i] = H[i + 1]; H[n--] = 0;
for (int i = 1; i <= n; ++i) {
while (top && H[st[top]] >= H[i]) {
s -= (ll) (st[top] - st[top - 1]) * H[st[top]];
--top;
}
st[++top] = i; s += (st[top] - st[top - 1]) * H[st[top]];
ans -= 2 * s;
} cout << ans << endl;
return 0;
}
【后缀数组】【LuoguP4248】 [AHOI2013]差异的更多相关文章
- luoguP4248 [AHOI2013]差异
题意 考虑式子前面那段其实是\((n-1)*\frac{n*(n+1)}{2}\),因为每个后缀出现了\(n-1\)次,后缀总长为\(\frac{n*(n+1)}{2}\). 现在考虑后面怎么求: \ ...
- BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈
BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...
- bzoj 3238: [Ahoi2013]差异 -- 后缀数组
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个 ...
- 【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈
[BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- [bzoj3238][Ahoi2013]差异_后缀数组_单调栈
差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...
- [AHOI2013] 差异 - 后缀数组,单调栈
[AHOI2013] 差异 Description 求 \(\sum {len(T_i) + len(T_j) - 2 lcp(T_i,T_j)}\) 的值 其中 \(T_i (i = 1,2,... ...
- BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2326 Solved: 1054[Submit][Status ...
- [BZOJ3238][Ahoi2013]差异解题报告|后缀数组
Description 先分析一下题目,我们显然可以直接算出sigma(len[Ti]+len[Tj])的值=(n-1)*n*(n+1)/2 接着就要去算这个字符串中所有后缀的两两最长公共前缀总和 首 ...
- 【bzoj3238】差异[AHOI2013](后缀数组+单调栈)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3238 这道题从大概半年以前就开始啃了,不过当时因为一些细节没调出来,看了Sakits神犇 ...
- BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】
题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...
随机推荐
- ELK学习笔记之logstash将配置写在多个文件
0x00 概述 我们用Logsatsh写配置文件的时候,如果读取的文件太多,匹配的正则过多,会使配置文件动辄成百上千行代码,可能会造成阅读和修改困难.这时候,我们可以将配置文件的输入.过滤.输出分别放 ...
- Spring-Cloud之开篇
一.为什么会有spring-cloud.随着现代互联网的发展,以前很多传统的单体项目将不再满足于现在的互联网需求,而这个时候就诞生了另外一种说法,微服务.简单理解就是将软件应用程序独立部署的服务的一中 ...
- 2019-07-22 phpStudy配置虚拟主机
1.右击 phpStudy ->[打开配置文件]->[vhosts-conf]: 2.在里面加入如下代码,并保存: NameVirtualHost *:80 <VirtualHost ...
- iOS - 架构模式 - 解密 MVC、MVP、MVVM、VIPER架构
在 iOS 中使用 MVC 架构感觉很奇怪? 迁移到MVVM架构又怀有疑虑?听说过 VIPER 又不确定是否真的值得切换? 相信你会找到以上问题的答案,如果没找到请在评论中指出. 你将要整理出你在 i ...
- linux入门—安装linux系统(1)
一,linux介绍 linux是一套免费使用和自由传播的类Unix操作系统,简单的说就是不要钱,你可以随便使用,也可以分享给其他人. (剩下的详细内容,个人认为百度百科的内容比我瞎讲强的多,网址:ht ...
- 原生JavaScript遮罩
/* 适用原生JS */ function showInfo(info) { var zzInfo = info; var mask_bg = document.createEleme ...
- js utc转当地时间
javascript utc转当地时间 后台传过来的时间:2019-07-03T01:39:51.691242+08:00 转成当地时间:2019-07-02 17:39:51 new Date(20 ...
- 【Win10】系统修改
1.删除“快速访问”[操作说明] a.打开HKEY_CLASSES_ROOT\CLSID\{679f85cb-0220-4080-b29b-5540cc05aab6}\ShellFolder ...
- java系统化基础-day01-基础语法知识
1.学前必看 该课程将系统化的讲解java基础,但是该课程并不适合零基础的学员,因为在整个java学习体系中我们是按照实际生产设计, 主体思路是以完成某个业务为主线,用到什么技术就学什么技术,即带着问 ...
- C#-使用GoogleAPI读写spreadsheets
https://docs.google.com/spreadsheets/在线使用一些常用办公工具,比如excel. 如需要C#代码自动读写这些excel,则需要使用GoogleAPI. 封装的公用类 ...