M - Ordering Tasks(拓扑排序)
M - Ordering Tasks
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu
Description
John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task is only possible if other tasks have already been executed.
Input
The input will consist of several instances of the problem. Each instance begins with a line containing two integers, 1 <= n <= 100 and m.n is the number of tasks (numbered from 1 to n) and m is the number of direct precedence relations between tasks. After this, there will be m lines with two integers i and j, representing the fact that task i must be executed before task j. An instance with n = m = 0 will finish the input.
Output
For each instance, print a line with n integers representing the tasks in a possible order of execution.
Sample Input
5 4
1 2
2 3
1 3
1 5
0 0
Sample Output
1 4 2 5 3
//这题的意思是这样的,第一行输入n,m,两个整数,说明有 1-n 个数,m个要求,接下来m行每行一个要求,a b,a必须放在b前面,输出一种可行的方案
mn都为0结束输入。
这个题目其实就是拓扑排序,思路是将有要求的用一个二维数组存起来,和图一样,读完数后,从1开始到n,从有关联的并且未放置过的数一直dfs遍历,找到最后一个,也就是找到没有要放在这个数后面的了,将它们这一串放在没放过的数组后面。
DFS:
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std; int n,m;
bool G[][];
int topo[];
int vis[];
int t; bool dfs(int u)
{
vis[u]=-; //标记为正在遍历的
for (int v=;v<=n;v++)
{
if (G[u][v])
{
if (vis[v]==-) return ; //说明组成了环,不能拓扑排序
else if (!vis[v]&&!dfs(v)) return ; //继续遍历未遍历的
}
}
vis[u]=; //标记遍历过了
topo[t--]=u; //输出的就是这个数组
return ;
} bool toposort()
{
t=n;
int i;
for (i=;i<=n;i++) //将所有数都遍历
if (!vis[i]&&!dfs(i)) return ;
return ;
}
int main()
{
int i;
int a,b;
while (scanf("%d%d",&n,&m)&&n+m)
{
memset(G,,sizeof (G));
for (i=;i<m;i++)
{
scanf("%d%d",&a,&b);
G [a][b]=; //记录关系
}
memset(vis,,sizeof(vis));
if (toposort())
{
for (i=;i<n;i++)
printf("%d ",topo[i]);
printf("%d\n",topo[n]);
}
}
return ;
}
Khan
# include <cstring>
# include <cstdio>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <sstream>
# include <set>
# include <cmath>
# include <algorithm>
# pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
# define LL long long
# define pr pair
# define mkp make_pair
# define lowbit(x) ((x)&(-x))
# define PI acos(-1.0)
# define INF 0x3f3f3f3f3f3f3f3f
# define eps 1e-
# define MOD inline int scan() {
int x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
inline void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N = ;
/**************************/ int n;
int mp[N][N];
int in[N];
int ans[N]; void khan()
{
queue<int> Q;
for (int i=;i<=n;i++)
if (in[i]==) Q.push(i);
int cnt=;
while (!Q.empty())
{
int u = Q.front(); Q.pop();
ans[cnt++] = u;
for (int i=;i<=n;i++)
{
if (mp[u][i])
{
in[i]--;
if (in[i]==) Q.push(i);
}
}
}
for (int i=;i<cnt;i++)
printf("%d%c",ans[i],i==cnt-?'\n':' ');
} int main()
{
while (scanf("%d",&n)!=EOF)
{
memset(mp,,sizeof(mp));
memset(in,,sizeof(in));
for (int i=;i<=n;i++)
{
int x;
while ()
{
scanf("%d",&x);
if (x==) break;
mp[i][x]=;
in[x]++;
}
}
khan();
}
return ;
}
M - Ordering Tasks(拓扑排序)的更多相关文章
- UVA.10305 Ordering Tasks (拓扑排序)
UVA.10305 Ordering Tasks 题意分析 详解请移步 算法学习 拓扑排序(TopSort) 拓扑排序的裸题 基本方法是,indegree表示入度表,vector存后继节点.在tops ...
- UVa 10305 - Ordering Tasks (拓扑排序裸题)
John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...
- Ordering Tasks 拓扑排序
John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...
- Uva 10305 - Ordering Tasks 拓扑排序基础水题 队列和dfs实现
今天刚学的拓扑排序,大概搞懂后发现这题是赤裸裸的水题. 于是按自己想法敲了一遍,用queue做的,也就是Kahn算法,复杂度o(V+E),调完交上去,WA了... 于是检查了一遍又交了一发,还是WA. ...
- UVA 10305 Ordering Tasks(拓扑排序的队列解法)
题目链接: https://vjudge.net/problem/UVA-10305#author=goodlife2017 题目描述 John有n个任务,但是有些任务需要在做完另外一些任务后才能做. ...
- UVA10305 Ordering Tasks (拓扑序列)
本文链接:http://www.cnblogs.com/Ash-ly/p/5398586.html 题意: 假设有N个变量,还有M个二元组(u, v),分别表示变量u 小于 v.那么.所有变量从小到大 ...
- Ordering Tasks(拓扑排序+dfs)
Ordering Tasks John has n tasks to do. Unfortunately, the tasks are not independent and the executio ...
- 拓扑排序(Topological Order)UVa10305 Ordering Tasks
2016/5/19 17:39:07 拓扑排序,是对有向无环图(Directed Acylic Graph , DAG )进行的一种操作,这种操作是将DAG中的所有顶点排成一个线性序列,使得图中的任意 ...
- [拓扑排序]Ordering Tasks UVA - 10305
拓扑排序模版题型: John has n tasks to do.Unfortunately, the tasks are not independent and the execution of o ...
随机推荐
- linux设置sudo不要密码
linux下,普通用户,sudo时需要密码 改成没密码, vi /etc/sudoers 在 root ALL=(ALL) ALL后加一行 sysusr ALL=(ALL) NOPASSWD: ALL ...
- 【翻译】Flink Table Api & SQL —Streaming 概念 —— 时态表
本文翻译自官网: Temporal Tables https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/strea ...
- IDEA中MyBatis插件的安装及使用
这个插件的好处就在于能自动关联mapper类与xml,让你可以快速的互相跳转,还能帮助你做简单的排错. 安装方法: 1.File→Settings→Plugins,输入mybatis plugin,本 ...
- FromXml 支付回调 xml 转数组
public function xx(){ $xml = '<xml><appid><![CDATA[xxxxxxxxxxxxx]]></appid> ...
- LODOP打印项水平居中
LODOP控制打印项水平居中,可以用如下语句,该语句控制的是打印项本身在纸张中水平居中.LODOP.SET_PRINT_STYLEA(0,"Horient",2);这个根据大的打印 ...
- 论文阅读:FaceBoxes: A CPU Real-time Face Detector with High Accuracy
文章: <FaceBoxes: A CPU Real-time Face Detector with High Accuracy> Introduction 2个挑战: 1)在杂乱背景下人 ...
- 手机端rem无限适配
参考文档: http://blog.csdn.net/xwqqq/article/details/54862279 https://github.com/amfe/lib-flexible/tree/ ...
- 多核vs多处理器
多核vs多处理器 多核CPU性能最好,但成本最高:多CPU成本小,便宜,但性能相对较差 线程数=cpu处理器个数 * 一个cpu内的核数[如果有超线程,再乘以超线程数] 多核 CPU 和多个 CPU ...
- 阿里云k8s构建镜像时设置版本号用于版本回滚
jenkins 构建配置参数化构建过程 构建 执行 shell , 将版本号参数传入 脚本 脚本push 带版本号的镜像到阿里云镜像仓库 #!/bin/bash #获取参数 while geto ...
- sql 表的连接 inner join、full join、left join、right join、natural join
一.内连接-inner jion : SELECT * FROM table1 INNER JOIN table2 ON table1.field1 compopr table2.field2 INN ...