题目链接:https://vjudge.net/problem/51Nod-1021

题意

N堆石子摆成一条线。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将N堆石子合并成一堆的最小代价。

例如:1 2 3 4 ,有不少合并方法

1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19)
1 2 3 4 => 1 5 4(5) => 1 9(14) => 10(24)
1 2 3 4 => 1 2 7(7) => 3 7(10) => 10(20)

括号里面为总代价可以看出,第一种方法的代价最低,现在给出n堆石子的数量,计算最小合并代价。

输入

第1行:N(2 <= N <= 100)

第2 - N + 1:N堆石子的数量(1 <= A[i] <= 10000)

输出

输出最小合并代价

样例输入

4
1
2
3
4

样例输出

19

题解:

这道题目如果其实我自己接触的时候还是很早的,我很早很早之前就在一场比赛当中接触到了这道题目,那是很久很久之前的一个春天,我大一的时候的一场校赛中,我唯一没有做出来TLE的题,因为当时还不知道记忆化搜索这个概念。

所以我当时的解法是用的dfs,没有使用记忆化进行剪枝。

这里的记忆化搜索其实可以对应动态规划的状态转移方程。

首先我们可以回到这道题目里面来,可以看到:

区间 [1..N] 经过 N-1 次合并会获得最终的一个数,那么在经过 N-2 次合并的时候是会还剩2个数的,而且这两个数肯定还是连续的 a[i]a[i+1] ,所以,如果我们设 dp[i][j] 表示合并区间 [i,j] 的最小代价,那么:

dp[i][j] = min(dp[i][k] + dp[k+1][j]) + sum(i,j) , 其中k=i,i+1,...,j-1

这里的 sum(i,j) 表示 a[i]+a[i+1]+...+a[j]

那么 dp[i][j] 怎么求呢,我们可以通过定义一个函数 dfs(i,j) 来求得,但是可以通过记忆化搜索进行剪枝优化,其实就是写DP的时候记录的一些中间结果对应的重叠子问题。

代码如下(这个代码我没有验证过正确性,不过应该是没有问题的,主要理解他的思想):

#include <iostream>
using namespace std; const int maxn = 1010; int n, a[maxn], dp[maxn][maxn], sum[maxn]; int dfs(int l, int r) {
if (l == r) return 0;
if (l+1 == r) {
return dp[l][r] = a[l] + a[r];
}
if (dp[l][r])
return dp[l][r];
for (int i = l; i < r; i ++) {
int tmp = dfs(l,i) + dfs(i+1, r) + sum[r] - sum[l-1];
if (!dp[l][r]) dp[l][r] = tmp;
else dp[l][r] = min(dp[l][r], tmp);
}
return dp[l][r];
} int main() {
cin >> n;
for (int i = 1; i <= n; i ++) {
cin >> a[i];
sum[i] = sum[i-1] + a[i];
}
cout << dfs(1, n) << endl;
return 0;
}

石子合并 区间DP模板题的更多相关文章

  1. 石子合并 区间dp模板

    题意:中文题 Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合 ...

  2. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  3. 石子合并——区间dp

    石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分, ...

  4. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  5. HRBUST - 1818 石子合并 区间dp入门

    有点理解了进阶指南上说的”阶段,状态和决策“ /* 区间dp的基础题: 以区间长度[2,n]为阶段,枚举该长度的区间,状态dp[l][r]表示合并区间[l,r]的最小费用 状态转移方程dp[l][r] ...

  6. [nyoj737]石子归并(区间dp入门题)

    题意:有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价最小值 ...

  7. 洛谷 P1080 石子合并 ( 区间DP )

    题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...

  8. 洛谷P1880 石子合并(环形石子合并 区间DP)

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  9. HDU 3506 (环形石子合并)区间dp+四边形优化

    Monkey Party Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Tot ...

随机推荐

  1. Arthas使用指南

    Arthas 能为你做什么? 这个类从哪个 jar 包加载的?为什么会报各种类相关的 Exception? 我改的代码为什么没有执行到?难道是我没 commit?分支搞错了? 遇到问题无法在预发 de ...

  2. go内置的反向代理

    package main import ( "log" "net/http" "net/http/httputil" "net/u ...

  3. shiro授权+注解式开发

    shiro授权和注解式开发 1.shiro授权角色.权限 2.Shiro的注解式开发 ShiroUserMapper.xml <select id="getRolesByUserId& ...

  4. Linux shell - 按时间和文件大小排序显示文件

    在工作中有这样的情况,需要显示所有的文件,按照时间先后或者文件大小先后排序显示 命令:ls 1.按时间排序显示文件 1 test@> ll -rt 2.按文件大小排序显示文件(文件大小单位:k, ...

  5. YAML_12 批量创建用户,分别设置用户组

    with_items标准循环 ansible]# vim add.yml --- - hosts: web2   remote_user: root   tasks:     - user:     ...

  6. 洛谷 P2363 马农

    题目描述 分别枚举两个矩阵?那样n^6太要命了. 可以枚举两个矩形的交点 将交点看成原点,可以将整个区域分成四个象限,1与3对应,2与4对应 再枚举相对应的象限计算可以获得的利益,用hash判重 可枚 ...

  7. laravel 多控制器路由

    laravel 路由: ======================================= 公司的情况很不乐观...... 破产清算随时可能发生......

  8. Pyspark 最近使用的一些有趣姿势的梳理

    之前对 SQL 还是不是非常熟悉的,但是现在或多或少还是会写一些计算任务.比如最近在推送将所有天级的耗时任务都从传统关系型数据库迁移至 Spark 集群当中进行计算,中间遇到一些有趣的小问题在这里记录 ...

  9. pycharm通过pytest运行报错:No test were found 解决

    今天写代码犯了一个不应该犯的小错误,通过记录下来便于查看 1.报错代码如下: platform win32 -- Python 3.7.3, pytest-4.0.2, py-1.8.0, plugg ...

  10. 模板 - 数据结构 - 链表/LinkedList

    一个只供删除的双向链表,为了简单不再引入head节点,而且也不进行next的套娃操作.空间使用略微多了一些,但是无伤大雅. struct LinkedList { static const int M ...