零起点Python大数据与量化交易

第1章 从故事开始学量化 1

1.1 亿万富翁的“神奇公式” 2

1.1.1 案例1-1:亿万富翁的“神奇公式” 2

1.1.2 案例分析:Python图表 5

1.1.3 matplotlib绘图模块库 7

1.1.4 案例分析:style绘图风格 10

1.1.5 案例分析:colormap颜色表 12

1.1.6 案例分析:颜色表关键词 14

1.1.7 深入浅出 17

1.2 股市“一月效应” 18

1.2.1 案例1-2:股市“一月效应” 18

1.2.2 案例分析:“一月效应”计算 19

1.2.3 案例分析:“一月效应”图表分析 24

1.2.4 案例分析:颜色表效果图 26

1.2.5 “一月效应”全文注解版Python源码 27

1.2.6 大数据?宏分析 34

1.3 量化交易流程与概念 36

1.3.1 数据分析I2O流程 36

1.3.2 量化交易不是高频交易、自动交易 37

1.3.3 小资、小白、韭菜 38

1.3.4 专业与业余 38

1.4 用户运行环境配置 42

1.4.1 程序目录结构 43

1.4.2 金融股票数据包 44

1.5 Python实战操作技巧 46

1.5.1 模块检测 46

1.5.2 Spyder编辑器界面设置 47

1.5.3 代码配色技巧 48

1.5.4 图像显示配置 50

1.5.5 Python2、Python 3双版本双开模式 51

1.5.6 单版本双开、多开模式 52

1.5.7 实战胜于一切 54

1.6 量化、中医与西医 54

第2章 常用量化技术指标与框架 56

2.1 案例2-1:SMA均线策略 56

2.1.1 案例要点与事件编程 58

2.1.2 量化程序结构 61

2.1.3 main程序主入口 61

2.1.4 KISS法则 63

2.2 Python量化系统框架 64

2.2.1 量化行业关键词 64

2.2.2 国外主流Python量化网站 65

2.2.3 我国主流Python量化网站 67

2.2.4 主流Python量化框架 70

2.3 常用量化软件包 78

2.3.1 常用量化软件包简介 79

2.3.2 案例2-2:模块库列表 80

2.4 常用量化技术指标 82

2.4.1 TA-Lib金融软件包 83

2.4.2 案例2-3:MA均线函数调用 84

2.4.3 TA-Lib函数调用 86

2.4.4 量化分析常用指标 88

2.5 经典量化策略 90

2.5.1 阿尔法(Alpha)策略 90

2.5.2 Beta策略 92

2.5.3 海龟交易法则 93

2.5.4 ETF套利策略 95

2.6 常用量化策略 95

2.6.1 动量交易策略 96

2.6.2 均值回归策略 97

2.6.3 其他常用量化策略 98

2.7 起点与终点 100

第3章 金融数据采集整理 101

3.1 常用数据源API与模块库 102

3.1.1 大数据综合API 102

3.1.2 专业财经数据API 103

3.1.3 专业数据模块库 104

3.2 案例3-1:zwDatX数据类 104

3.3 美股数据源模块库 108

3.4 开源文档库Read the Docs 109

3.5 案例3-2:下载美股数据 110

3.6 财经数据源模块库TuShare 113

3.6.1 沪深股票列表 115

3.6.2 案例3-3:下载股票代码数据 116

3.6.3 CSV文件处理 119

3.7 历史数据 121

3.7.1 历史行情 121

3.7.2 案例3-4:下载近期股票数据 124

3.7.3 历史复权数据 130

3.7.4 案例3-5:下载历史复权数据 131

3.8 其他交易数据 134

3.9 zwDat超大股票数据源与数据更新 143

3.9.1 案例3-6:A股基本概况数据下载 144

3.9.2 案例3-7:A股交易数据下载 146

3.9.3 案例3-8:A股指数行情数据下载 150

3.9.4 案例3-9:美股交易数据下载 151

3.10 数据归一化处理 153

3.10.1 中美股票数据格式差异 153

3.10.2 案例3-10:数据格式转化 154

3.10.3 案例3-11:A股策略PAT实盘分析 156

3.10.4 案例3-12:数据归一化 158

3.11 为有源头活水来 160

第4章 PAT案例汇编 162

4.1 投资组合与回报率 163

4.1.1 案例4-1:下载多组美股数据 163

4.1.2 案例4-2:投资组合收益计算 165

4.2 SMA均线策略 168

4.2.1 SMA简单移动平均线 168

4.2.2 案例4-3:原版SMA均线策略 169

4.2.3 案例4-4:增强版SMA均线策略 173

4.2.4 案例4-5:A股版SMA均线策略 174

4.3 均线交叉策略 175

4.3.1 案例4-6:均线交叉策略 176

4.3.2 案例4-7:A股版均线交叉策略 178

4.4 VWAP动量策略 181

4.4.1 案例4-8:VWAP动量策略 182

4.4.2 案例4-9:A股版VWAP动量策略 183

4.5 布林带策略 183

4.5.1 案例4-10:布林带策略 185

4.5.2 案例4-11:A股版布林带策略 186

4.6 RSI2策略 188

4.6.1 案例4-12:RSI2策略 190

4.6.2 案例4-13:A股版RSI2策略 190

4.7 案例与传承 194

第5章 zwQuant整体架构 196

5.1 发布前言 196

5.2 功能简介 197

5.2.1 目录结构 197

5.2.2 安装与更新 198

5.2.3 模块说明 199

5.2.4 zwSys模块:系统变量与类定义 200

5.2.5 zwTools模块:常用(非量化)工具函数 201

5.2.6 zwQTBox:常用“量化”工具函数集 201

5.2.7 zwQTDraw.py:量化绘图工具函数 203

5.2.8 zwBacktest:回溯测试工具函数 203

5.2.9 zwStrategy:策略工具函数 203

5.2.10 zw_TA-Lib:金融函数模块 204

5.3 示例程序 207

5.4 常用量化分析参数 208

5.5 回溯案例:对标测试 209

5.5.1 对标测试1:投资回报参数 209

5.5.2 对标测试2:VWAP策略 211

5.6 回报参数计算 214

5.7 主体框架 220

5.7.1 stkLib内存数据库 220

5.7.2 Bars数据包 221

5.7.3 案例:内存数据库&数据包 222

5.7.4 qxLib、xtrdLib 227

5.7.5 案例5-1:qxLib数据 228

5.7.6 量化系统的价格体系 230

5.7.7 数据预处理 231

5.7.8 绘图模板 234

5.8 新的起点 236

第6章 模块详解与实盘数据 237

6.1 回溯流程 238

6.1.1 案例6-1:投资回报率 238

6.1.2 代码构成 242

6.1.3 运行总流程 243

6.2 运行流程详解 244

6.2.1 设置股票数据源 244

6.2.2 设置策略参数 247

6.2.3 dataPre数据预处理 249

6.2.4 绑定策略函数 253

6.2.5 回溯测试:zwBackTest 253

6.2.6 输出回溯结果数据、图表 258

6.3 零点策略 260

6.3.1 mul多个时间点的交易&数据 263

6.3.2 案例6-2:多个时间点交易 264

6.4 不同数据源与格式修改 270

6.4.1 案例6-3:数据源修改 272

6.4.2 数据源格式修改 274

6.5 金融数据包与实盘数据更新 275

6.5.1 大盘指数文件升级 276

6.5.2 实盘数据更新 277

6.5.3 案例6-4:A股实盘数据更新 277

6.5.4 案例6-5:大盘指数更新 279

6.6 稳定第一 281

第7章 量化策略库 282

7.1 量化策略库简介 282

7.1.1 量化系统的三代目 283

7.1.2 通用数据预处理函数 283

7.2 SMA均线策略 286

7.2.1 案例7-1:SMA均线策略 286

7.2.2 实盘下单时机与推荐 289

7.2.3 案例7-2:实盘SMA均线策略 290

7.3 CMA均线交叉策略 294

7.3.1 案例7-3:均线交叉策略 294

7.3.2 对标测试误差分析 296

7.3.3 案例7-4:CMA均线交叉策略修改版 299

7.3.4 人工优化参数 300

7.4 VWAP策略 301

7.4.1 案例7-5:VWAP策略 301

7.4.2 案例7-6:实盘VWAP策略 303

7.5 BBands布林带策略 304

7.5.1 案例7-7:BBands布林带策略 305

7.5.2 案例7-8:实盘BBands布林带策略 306

7.6 大道至简1 1 307

第8章 海龟策略与自定义扩展 309

8.1 策略库 309

8.1.1 自定义策略 310

8.1.2 海龟投资策略 310

8.2 tur海龟策略v1:从零开始 311

8.3 案例8-1:海龟策略框架 311

8.4 tur海龟策略v2:策略初始化 312

8.5 案例8-2:策略初始化 312

8.6 tur海龟策略v3:数据预处理 313

8.7 案例8-3:数据预处理 314

8.8 tur海龟策略v4:策略分析 317

8.9 案例8-4:策略分析 317

8.10 tur海龟策略v5:数据图表输出 320

8.10.1 案例8-5:图表输出 320

8.10.2 参数优化 324

8.10.3 案例8-6:参数优化 324

8.11 tur海龟策略v9:加入策略库 325

8.12 案例8-7:入库 326

8.13 庖丁解牛 328

第9章 TA-Lib函数库与策略开发 329

9.1 TA-Lib技术指标 329

9.1.1 TA-Lib官网 329

9.1.2 矩阵版TA-Lib金融函数模块 330

9.2 MACD策略 331

9.2.1 MACD策略1 331

9.2.2 案例9-1:MACD_v1 335

9.2.3 MACD策略2 336

9.2.4 案例9-2:MACD_v2 338

9.3 KDJ策略 340

9.3.1 KDJ策略1 340

9.3.2 案例9-3:KDJ01 343

9.3.3 KDJ策略2 346

9.3.4 案例9-4:KDJ02 347

9.4 RSI策略 350

9.4.1 RSI取值的大小 351

9.4.2 RSI策略 351

9.4.3 预留参数优化接口 356

9.4.4 案例9-5:A股版RSI策略 357

9.5 基石、策略与灵感 358

第10章 扩展与未来 360

10.1 回顾案例2-1:SMA均线策略 360

案例10-1:SMA均线策略扩展 363

10.2 大盘指数资源 365

10.2.1 大盘指数文件升级 366

10.2.2 大盘指数内存数据库 367

10.2.3 扩展zwQuantX类变量 368

10.2.4 大盘指数读取函数 368

10.2.5 案例10-2:读取指数 369

10.2.6 大盘数据切割 370

10.2.7 案例10-3:inxCut数据切割 372

10.3 系统整合 373

10.3.1 案例10-4:整合设置 375

10.3.2 案例10-5:修改指数代码 376

10.3.3 修改sta_dataPre0xtim函数 377

10.3.4 案例10-6:整合数据切割 380

10.3.5 修改绘图函数 381

10.4 扩展完成 384

案例10-7:SMA均线扩展策略 384

10.5 其他扩展课题 386

10.5.1 复权数据冲突 386

10.5.2 波动率指标DVIX 386

10.5.3 修改回溯主函数zwBackTest 387

10.5.4 案例10-8:波动率 390

10.5.5 空头交易 392

10.5.6 虚拟空头交易 392

10.5.7 修改检查函数 393

10.5.8 案例10-9:空头数据 396

10.6 终点与起点 397

附录A zwPython开发平台用户手册 398

附录B Python量化学习路线图 423

下载地址:https://pan.baidu.com/s/1QlQ3I6w3BHn904teIu1cJA

关注微信公众号获取提取码:

  输入:pysp 获取提取码

零起点Python大数据与量化交易的更多相关文章

  1. 学习推荐《零起点Python大数据与量化交易》中文PDF+源代码

    学习量化交易推荐学习国内关于Python大数据与量化交易的原创图书<零起点Python大数据与量化交易>. 配合zwPython开发平台和zwQuant开源量化软件学习,是一套完整的大数据 ...

  2. 《零起点,python大数据与量化交易》

    <零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库 ...

  3. 零起点PYTHON足彩大数据与机器学习实盘分析

    零起点PYTHON足彩大数据与机器学习实盘分析 第1章 足彩与数据分析 1 1.1 “阿尔法狗”与足彩 1 1.2 案例1-1:可怕的英国足球 3 1.3 关于足彩的几个误区 7 1.4 足彩·大事件 ...

  4. Python大数据与机器学习之NumPy初体验

    本文是Python大数据与机器学习系列文章中的第6篇,将介绍学习Python大数据与机器学习所必须的NumPy库. 通过本文系列文章您将能够学到的知识如下: 应用Python进行大数据与机器学习 应用 ...

  5. 零基础入门到精通:Python大数据与机器学习之Pandas-数据操作

    在这里还是要推荐下我自己建的Python开发学习群:483546416,群里都是学Python开发的,如果你正在学习Python ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有Python ...

  6. 零起点PYTHON机器学习快速入门 PDF |网盘链接下载|

      点击此处进入下载地址 提取码:2wg3 资料简介: 本书采用独创的黑箱模式,MBA案例教学机制,结合一线实战案例,介绍Sklearn人工智能模块库和常用的机器学习算法.书中配备大量图表说明,没有枯 ...

  7. python大数据工作流程

    本文作者:hhh5460 大数据分析,内存不够用怎么办? 当然,你可以升级你的电脑为超级电脑. 另外,你也可以采用硬盘操作. 本文示范了硬盘操作的一种可能的方式. 本文基于:win10(64) + p ...

  8. python大数据

    http://blog.csdn.net/xnby/article/details/50782913 一句话总结:spark是一个基于内存的大数据计算框架, 上层包括了:Spark SQL类似Hive ...

  9. Python大数据应用

    一.三国演义人物出场统计 先检查安装包 1.jieba库基本介绍 (1)jieba库概述 jieba是优秀的中文分词第三方库 中文文本需要通过分词获得单个的词语 jieba是优秀的中文分词第三方库,需 ...

随机推荐

  1. postgresql从库提升为主库

    一.停主库 1.查看当前连接 select pid,datname,usename,client_addr,client_port, application_name from pg_stat_act ...

  2. SSM框架--Spring+SpringMVC+Mybatis (IDEA)搭建

    使用idea创建一个maven项目( 这里演示 的是 web项目) 点击 Finish 然后开始配置 pom.xml文件(添加各种依赖jar包) 先去找 spring 所需的 jar包 jar包中心仓 ...

  3. python zlib模块缺失报错:RuntimeError: Compression requires the (missing) zlib module

    解决方式: # yum install zlib # yum install zlib-devel 下载成功后,进入python2.7的目录,重新执行 #make #make install 此时先前 ...

  4. Java中多态

    多态:把子类看成是父类,把实现类看成是接口,这样类就具有多种形态,称为多态. 在多态中访问成员变量,访问的是父类中的成员变量. 在多态中访问成员方法,先访问的是子类,看看子类有没有覆盖重写要访问的父类 ...

  5. 09-Flutter移动电商实战-移动商城数据请求实战

    1.URL接口管理文件建立 第一步需要在建立一个URL的管理文件,因为课程的接口会一直进行变化,所以单独拿出来会非常方便变化接口.当然工作中的URL管理也是需要这样配置的,以为我们会不断的切换好几个服 ...

  6. tornado处理跨域问题

    报错信息一: Access to XMLHttpRequest at 'http://localhost:4445/api/v/getmsg' from origin 'http://localhos ...

  7. LeetCode 1027. Longest Arithmetic Sequence

    原题链接在这里:https://leetcode.com/problems/longest-arithmetic-sequence/ 题目: Given an array A of integers, ...

  8. php web开发——文件夹的上传和下载

    核心原理: 该项目核心就是文件分块上传.前后端要高度配合,需要双方约定好一些数据,才能完成大文件分块,我们在项目中要重点解决的以下问题. * 如何分片: * 如何合成一个文件: * 中断了从哪个分片开 ...

  9. circus && web comsole docker-compose 独立部署web console 的一个bug

    如果直接使用以下的docker-compose 文件部署会有通过多播通信获取endpoint 异常的问题(circus 在stats endpoint 获取少了一个c) 这个问题是部分网络情况下会出现 ...

  10. [THUPC2019]不等式/[51Nod1598]方程最小值

    [THUPC2019]不等式/[51Nod1598]方程最小值 题目大意: 给定\(a_{1\sim n}\)和\(b_{1\sim n}\),令\(f_k(x)=\sum_{i=1}^k|a_ix+ ...