零起点Python大数据与量化交易

第1章 从故事开始学量化 1

1.1 亿万富翁的“神奇公式” 2

1.1.1 案例1-1:亿万富翁的“神奇公式” 2

1.1.2 案例分析:Python图表 5

1.1.3 matplotlib绘图模块库 7

1.1.4 案例分析:style绘图风格 10

1.1.5 案例分析:colormap颜色表 12

1.1.6 案例分析:颜色表关键词 14

1.1.7 深入浅出 17

1.2 股市“一月效应” 18

1.2.1 案例1-2:股市“一月效应” 18

1.2.2 案例分析:“一月效应”计算 19

1.2.3 案例分析:“一月效应”图表分析 24

1.2.4 案例分析:颜色表效果图 26

1.2.5 “一月效应”全文注解版Python源码 27

1.2.6 大数据?宏分析 34

1.3 量化交易流程与概念 36

1.3.1 数据分析I2O流程 36

1.3.2 量化交易不是高频交易、自动交易 37

1.3.3 小资、小白、韭菜 38

1.3.4 专业与业余 38

1.4 用户运行环境配置 42

1.4.1 程序目录结构 43

1.4.2 金融股票数据包 44

1.5 Python实战操作技巧 46

1.5.1 模块检测 46

1.5.2 Spyder编辑器界面设置 47

1.5.3 代码配色技巧 48

1.5.4 图像显示配置 50

1.5.5 Python2、Python 3双版本双开模式 51

1.5.6 单版本双开、多开模式 52

1.5.7 实战胜于一切 54

1.6 量化、中医与西医 54

第2章 常用量化技术指标与框架 56

2.1 案例2-1:SMA均线策略 56

2.1.1 案例要点与事件编程 58

2.1.2 量化程序结构 61

2.1.3 main程序主入口 61

2.1.4 KISS法则 63

2.2 Python量化系统框架 64

2.2.1 量化行业关键词 64

2.2.2 国外主流Python量化网站 65

2.2.3 我国主流Python量化网站 67

2.2.4 主流Python量化框架 70

2.3 常用量化软件包 78

2.3.1 常用量化软件包简介 79

2.3.2 案例2-2:模块库列表 80

2.4 常用量化技术指标 82

2.4.1 TA-Lib金融软件包 83

2.4.2 案例2-3:MA均线函数调用 84

2.4.3 TA-Lib函数调用 86

2.4.4 量化分析常用指标 88

2.5 经典量化策略 90

2.5.1 阿尔法(Alpha)策略 90

2.5.2 Beta策略 92

2.5.3 海龟交易法则 93

2.5.4 ETF套利策略 95

2.6 常用量化策略 95

2.6.1 动量交易策略 96

2.6.2 均值回归策略 97

2.6.3 其他常用量化策略 98

2.7 起点与终点 100

第3章 金融数据采集整理 101

3.1 常用数据源API与模块库 102

3.1.1 大数据综合API 102

3.1.2 专业财经数据API 103

3.1.3 专业数据模块库 104

3.2 案例3-1:zwDatX数据类 104

3.3 美股数据源模块库 108

3.4 开源文档库Read the Docs 109

3.5 案例3-2:下载美股数据 110

3.6 财经数据源模块库TuShare 113

3.6.1 沪深股票列表 115

3.6.2 案例3-3:下载股票代码数据 116

3.6.3 CSV文件处理 119

3.7 历史数据 121

3.7.1 历史行情 121

3.7.2 案例3-4:下载近期股票数据 124

3.7.3 历史复权数据 130

3.7.4 案例3-5:下载历史复权数据 131

3.8 其他交易数据 134

3.9 zwDat超大股票数据源与数据更新 143

3.9.1 案例3-6:A股基本概况数据下载 144

3.9.2 案例3-7:A股交易数据下载 146

3.9.3 案例3-8:A股指数行情数据下载 150

3.9.4 案例3-9:美股交易数据下载 151

3.10 数据归一化处理 153

3.10.1 中美股票数据格式差异 153

3.10.2 案例3-10:数据格式转化 154

3.10.3 案例3-11:A股策略PAT实盘分析 156

3.10.4 案例3-12:数据归一化 158

3.11 为有源头活水来 160

第4章 PAT案例汇编 162

4.1 投资组合与回报率 163

4.1.1 案例4-1:下载多组美股数据 163

4.1.2 案例4-2:投资组合收益计算 165

4.2 SMA均线策略 168

4.2.1 SMA简单移动平均线 168

4.2.2 案例4-3:原版SMA均线策略 169

4.2.3 案例4-4:增强版SMA均线策略 173

4.2.4 案例4-5:A股版SMA均线策略 174

4.3 均线交叉策略 175

4.3.1 案例4-6:均线交叉策略 176

4.3.2 案例4-7:A股版均线交叉策略 178

4.4 VWAP动量策略 181

4.4.1 案例4-8:VWAP动量策略 182

4.4.2 案例4-9:A股版VWAP动量策略 183

4.5 布林带策略 183

4.5.1 案例4-10:布林带策略 185

4.5.2 案例4-11:A股版布林带策略 186

4.6 RSI2策略 188

4.6.1 案例4-12:RSI2策略 190

4.6.2 案例4-13:A股版RSI2策略 190

4.7 案例与传承 194

第5章 zwQuant整体架构 196

5.1 发布前言 196

5.2 功能简介 197

5.2.1 目录结构 197

5.2.2 安装与更新 198

5.2.3 模块说明 199

5.2.4 zwSys模块:系统变量与类定义 200

5.2.5 zwTools模块:常用(非量化)工具函数 201

5.2.6 zwQTBox:常用“量化”工具函数集 201

5.2.7 zwQTDraw.py:量化绘图工具函数 203

5.2.8 zwBacktest:回溯测试工具函数 203

5.2.9 zwStrategy:策略工具函数 203

5.2.10 zw_TA-Lib:金融函数模块 204

5.3 示例程序 207

5.4 常用量化分析参数 208

5.5 回溯案例:对标测试 209

5.5.1 对标测试1:投资回报参数 209

5.5.2 对标测试2:VWAP策略 211

5.6 回报参数计算 214

5.7 主体框架 220

5.7.1 stkLib内存数据库 220

5.7.2 Bars数据包 221

5.7.3 案例:内存数据库&数据包 222

5.7.4 qxLib、xtrdLib 227

5.7.5 案例5-1:qxLib数据 228

5.7.6 量化系统的价格体系 230

5.7.7 数据预处理 231

5.7.8 绘图模板 234

5.8 新的起点 236

第6章 模块详解与实盘数据 237

6.1 回溯流程 238

6.1.1 案例6-1:投资回报率 238

6.1.2 代码构成 242

6.1.3 运行总流程 243

6.2 运行流程详解 244

6.2.1 设置股票数据源 244

6.2.2 设置策略参数 247

6.2.3 dataPre数据预处理 249

6.2.4 绑定策略函数 253

6.2.5 回溯测试:zwBackTest 253

6.2.6 输出回溯结果数据、图表 258

6.3 零点策略 260

6.3.1 mul多个时间点的交易&数据 263

6.3.2 案例6-2:多个时间点交易 264

6.4 不同数据源与格式修改 270

6.4.1 案例6-3:数据源修改 272

6.4.2 数据源格式修改 274

6.5 金融数据包与实盘数据更新 275

6.5.1 大盘指数文件升级 276

6.5.2 实盘数据更新 277

6.5.3 案例6-4:A股实盘数据更新 277

6.5.4 案例6-5:大盘指数更新 279

6.6 稳定第一 281

第7章 量化策略库 282

7.1 量化策略库简介 282

7.1.1 量化系统的三代目 283

7.1.2 通用数据预处理函数 283

7.2 SMA均线策略 286

7.2.1 案例7-1:SMA均线策略 286

7.2.2 实盘下单时机与推荐 289

7.2.3 案例7-2:实盘SMA均线策略 290

7.3 CMA均线交叉策略 294

7.3.1 案例7-3:均线交叉策略 294

7.3.2 对标测试误差分析 296

7.3.3 案例7-4:CMA均线交叉策略修改版 299

7.3.4 人工优化参数 300

7.4 VWAP策略 301

7.4.1 案例7-5:VWAP策略 301

7.4.2 案例7-6:实盘VWAP策略 303

7.5 BBands布林带策略 304

7.5.1 案例7-7:BBands布林带策略 305

7.5.2 案例7-8:实盘BBands布林带策略 306

7.6 大道至简1 1 307

第8章 海龟策略与自定义扩展 309

8.1 策略库 309

8.1.1 自定义策略 310

8.1.2 海龟投资策略 310

8.2 tur海龟策略v1:从零开始 311

8.3 案例8-1:海龟策略框架 311

8.4 tur海龟策略v2:策略初始化 312

8.5 案例8-2:策略初始化 312

8.6 tur海龟策略v3:数据预处理 313

8.7 案例8-3:数据预处理 314

8.8 tur海龟策略v4:策略分析 317

8.9 案例8-4:策略分析 317

8.10 tur海龟策略v5:数据图表输出 320

8.10.1 案例8-5:图表输出 320

8.10.2 参数优化 324

8.10.3 案例8-6:参数优化 324

8.11 tur海龟策略v9:加入策略库 325

8.12 案例8-7:入库 326

8.13 庖丁解牛 328

第9章 TA-Lib函数库与策略开发 329

9.1 TA-Lib技术指标 329

9.1.1 TA-Lib官网 329

9.1.2 矩阵版TA-Lib金融函数模块 330

9.2 MACD策略 331

9.2.1 MACD策略1 331

9.2.2 案例9-1:MACD_v1 335

9.2.3 MACD策略2 336

9.2.4 案例9-2:MACD_v2 338

9.3 KDJ策略 340

9.3.1 KDJ策略1 340

9.3.2 案例9-3:KDJ01 343

9.3.3 KDJ策略2 346

9.3.4 案例9-4:KDJ02 347

9.4 RSI策略 350

9.4.1 RSI取值的大小 351

9.4.2 RSI策略 351

9.4.3 预留参数优化接口 356

9.4.4 案例9-5:A股版RSI策略 357

9.5 基石、策略与灵感 358

第10章 扩展与未来 360

10.1 回顾案例2-1:SMA均线策略 360

案例10-1:SMA均线策略扩展 363

10.2 大盘指数资源 365

10.2.1 大盘指数文件升级 366

10.2.2 大盘指数内存数据库 367

10.2.3 扩展zwQuantX类变量 368

10.2.4 大盘指数读取函数 368

10.2.5 案例10-2:读取指数 369

10.2.6 大盘数据切割 370

10.2.7 案例10-3:inxCut数据切割 372

10.3 系统整合 373

10.3.1 案例10-4:整合设置 375

10.3.2 案例10-5:修改指数代码 376

10.3.3 修改sta_dataPre0xtim函数 377

10.3.4 案例10-6:整合数据切割 380

10.3.5 修改绘图函数 381

10.4 扩展完成 384

案例10-7:SMA均线扩展策略 384

10.5 其他扩展课题 386

10.5.1 复权数据冲突 386

10.5.2 波动率指标DVIX 386

10.5.3 修改回溯主函数zwBackTest 387

10.5.4 案例10-8:波动率 390

10.5.5 空头交易 392

10.5.6 虚拟空头交易 392

10.5.7 修改检查函数 393

10.5.8 案例10-9:空头数据 396

10.6 终点与起点 397

附录A zwPython开发平台用户手册 398

附录B Python量化学习路线图 423

下载地址:https://pan.baidu.com/s/1QlQ3I6w3BHn904teIu1cJA

关注微信公众号获取提取码:

  输入:pysp 获取提取码

零起点Python大数据与量化交易的更多相关文章

  1. 学习推荐《零起点Python大数据与量化交易》中文PDF+源代码

    学习量化交易推荐学习国内关于Python大数据与量化交易的原创图书<零起点Python大数据与量化交易>. 配合zwPython开发平台和zwQuant开源量化软件学习,是一套完整的大数据 ...

  2. 《零起点,python大数据与量化交易》

    <零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库 ...

  3. 零起点PYTHON足彩大数据与机器学习实盘分析

    零起点PYTHON足彩大数据与机器学习实盘分析 第1章 足彩与数据分析 1 1.1 “阿尔法狗”与足彩 1 1.2 案例1-1:可怕的英国足球 3 1.3 关于足彩的几个误区 7 1.4 足彩·大事件 ...

  4. Python大数据与机器学习之NumPy初体验

    本文是Python大数据与机器学习系列文章中的第6篇,将介绍学习Python大数据与机器学习所必须的NumPy库. 通过本文系列文章您将能够学到的知识如下: 应用Python进行大数据与机器学习 应用 ...

  5. 零基础入门到精通:Python大数据与机器学习之Pandas-数据操作

    在这里还是要推荐下我自己建的Python开发学习群:483546416,群里都是学Python开发的,如果你正在学习Python ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有Python ...

  6. 零起点PYTHON机器学习快速入门 PDF |网盘链接下载|

      点击此处进入下载地址 提取码:2wg3 资料简介: 本书采用独创的黑箱模式,MBA案例教学机制,结合一线实战案例,介绍Sklearn人工智能模块库和常用的机器学习算法.书中配备大量图表说明,没有枯 ...

  7. python大数据工作流程

    本文作者:hhh5460 大数据分析,内存不够用怎么办? 当然,你可以升级你的电脑为超级电脑. 另外,你也可以采用硬盘操作. 本文示范了硬盘操作的一种可能的方式. 本文基于:win10(64) + p ...

  8. python大数据

    http://blog.csdn.net/xnby/article/details/50782913 一句话总结:spark是一个基于内存的大数据计算框架, 上层包括了:Spark SQL类似Hive ...

  9. Python大数据应用

    一.三国演义人物出场统计 先检查安装包 1.jieba库基本介绍 (1)jieba库概述 jieba是优秀的中文分词第三方库 中文文本需要通过分词获得单个的词语 jieba是优秀的中文分词第三方库,需 ...

随机推荐

  1. Windows Cmd 命令管理服务

    今天在Windows 干净环境上安装软件过程中,安装完成后,发现部署在IIS 上的网站无法使用,提示  "您提交的参数有误!,请重新提交" 纯净的windows 7 x64位环境, ...

  2. 攻防世界WEB高手进阶之Zhuanxv

    1.一开始就是一个时钟界面 2.扫描目录发现/list 目录 打开是后台登陆,看了一下源码,也没发现什么,焦灼... 3.百度上搜了一波wp,发现原来在css里面藏了东西 后台的背景图片居然是这样读取 ...

  3. Codeforces B. Minimum Possible LCM(贪心数论)

    题目描述: B. Minimum Possible LCM time limit per test 4 seconds memory limit per test 1024 megabytes inp ...

  4. 2019安徽省程序设计竞赛 I.你的名字(序列自动机)

    这题和今年南昌邀请网络预选赛M题很像啊,不过主串数量不是一个了 都是在主串中判断子串是不是属于主串的一个子序列 #include <iostream> #include <cstri ...

  5. hdu3486Interviewe(二分是错的)(ST算法RMQ + 判定上下界枚举)

    题目大意是找最小的m使得前m段中每一段的最大值相加严格大于k,每一段长度为[n/m](n/m向下取整,多余的后半部分部分n-m*[n/m]不要) 先给一段我一开始的思路,和网上许多题解思路一样,但其实 ...

  6. es题目

    1.elasticsearch了解多少,说说你们公司es的集群架构,索引数据大小,分片有多少,以及一些调优手段 .2.elasticsearch的倒排索引是什么?3.elasticsearch 索引数 ...

  7. jdbc.DataSourceProperties$DataSourceBeanCreationException: Failed to determine a suitable driver class

    java.lang.IllegalStateException: Failed to load ApplicationContext at org.springframework.test.conte ...

  8. mysql数据库的concat(),group_concat(),concat_ws()函数,三者之间的比较

    今天在写项目的时候,看到同事使用group_concat()函数 和concat_ws()函数,这两个函数和普通的concat()函数之间到底有什么不同. 我使用的数据库是mysql数据库. GROU ...

  9. Vue --- 组件练习

    一 ad_data = { tv: [ {img: 'img/tv/001.png', title: 'tv1'}, {img: 'img/tv/002.png', title: 'tv2'}, {i ...

  10. 异步编程(回调函数,promise)

    一.回调函数 ①概念:一般情况下,程序会时常通过API调用库里所预先备好的函数.但是有些库函数却要求应用先传给它一个函数,好在合适的时候调用,以完成目标任务.这个被传入的.后又被调用的函数就称为回调函 ...