High Performance Visual Tracking with Siamese Region Proposal Network

2018-11-26 18:32:02

Paperhttp://openaccess.thecvf.com/content_cvpr_2018/papers/Li_High_Performance_Visual_CVPR_2018_paper.pdf

PyTorch Codehttps://github.com/songdejia/siamese-RPN-pytorch

Train Code: https://github.com/MathsXDC/DaSiamRPNWithOfflineTraining

TensorFlow Codehttps://github.com/makalo/Siamese-RPN-tensorflow

Reference Codehttps://github.com/zkisthebest/Siamese-RPN

Another Implementation based on PyTorch with deeper and wider backbone network (SiamDW, CVPR-2019)https://github.com/researchmm/SiamDW (all the train and test code !!!)

1. Background and Motivation :

现有的跟踪方法主要分为两种:

1). 相关滤波跟踪方法;也有将 deep feature 结合到 CF 方法中,但是速度不够快;

2). 完全基于深度网络的跟踪方法,由于没有用到 domain-specific information,效果并不是很突出。

本文将 RPN 引入到跟踪过程中,极大地改善了跟踪效果。主要包含两个分支:

1). Template branch;

2). Detection branch;

在测试阶段,作者将其看做是:local one-shot detection framework,第一帧中的 BBox 仅提供 exemplar。作者将 template branch 重新看做是参数来预测 detection kernels,类似于 meta-learner。meata-learner 和 detection branch 都仅仅用 RPN 的监督来进行端到端的训练。在 online tracking 过程中,Template branch 会被修剪以达到加速的目的。本文所提出的方法也是第一次将 online tracking 看做是 one-shot detection 任务。

本文所提出的 Siamese RPN 的流程图如下所示:

2. Siamese-RPN framework

2.1 Siamese feature extraction subnetwork 

在孪生网络中, 作者采用不带 padding 的全卷积网络。骨干网络是修改后的 AlexNet,Siamese tracker 的示意图如下:

2.2 Region Proposal Subnetwork 

该 RPN 子网络包含两个部分:pair-wise correlation section 以及 supervision section。

Supervision section 包含两个分支:一个是用于前景和背景分类的分支,另一个分支用于 proposal 回归。

如果有 k 个 anchors,网络需要输出 2k  channel 以进行分类,4k channels 以进行回归。所以,pair-wise correlation 首先增加 channel 个数为两个部分。另一个分支也分为两路,即:reg 和 cls。Template 分支输出的 feature 可以看做是 “kernel”,在 search region 的 feature 上进行卷积操作。在 classification 和 regression branch 上都要进行 correlation 操作:

当进行训练时,作者采用 Faster RCNN 的损失函数。用交叉熵损失函数来训练 classification 分支,L1 loss 用于 regression 分支的训练。

Ax, Ay, Aw, Ah 代表 anchor boxes 的中心点和形状,Tx, Ty, Tw, Th 代表 GT boxes,所以,归一化的距离可以表达为:

然后,其通过 L1 loss,具体表达形式为:

最终,作者优化的损失函数为:

其中,Lcls 是交叉熵损失,Lreg 是:

2.3 Training Phase 

在训练阶段,ImageNet VID 和 Youtube-BB 被用于采集 sample pairs 来进行相似度匹配的训练。

anchors 的选择是基于 IoU 进行的,当 IoU 大于设定的阈值(文中设置为 0.6),并且是正样本的时候,被当做是 anchors。负样本则认为是那些 IoU 低于 0.3 的。

对于一个 training pair,作者设置最多 16 个正样本,总共 64 个样本。

3. Tracking as one-shot detection:

==

SiamRPN: High Performance Visual Tracking with Siamese Region Proposal Network的更多相关文章

  1. RPN(region proposal network)之理解

    在faster-r-cnn 中,因为引入rpn层,使得算法速度变快了不少,其实rpn主要作用预测的是 “相对的平移,缩放尺度”,rpn提取出的proposals通常要和anchor box进行拟合回归 ...

  2. 【论文阅读】An Anchor-Free Region Proposal Network for Faster R-CNN based Text Detection Approaches

    懒得转成文字再写一遍了,直接把做过的PPT放出来吧. 论文连接:https://link.zhihu.com/?target=https%3A//arxiv.org/pdf/1804.09003v1. ...

  3. 论文笔记:Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking

    Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking 2019-03-20 16:45:23 Paper:ht ...

  4. Summary on Visual Tracking: Paper List, Benchmarks and Top Groups

    Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...

  5. 论文阅读笔记二十七:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(CVPR 2016)

    论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对 ...

  6. 目标检测(四)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    作者:Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun SPPnet.Fast R-CNN等目标检测算法已经大幅降低了目标检测网络的运行时间. ...

  7. [论文理解] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 简介 Faster R-CNN是很经典的t ...

  8. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    将 RCN 中下面 3 个独立模块整合在一起,减少计算量: CNN:提取图像特征 SVM:目标分类识别 Regression 模型:定位 不对每个候选区域独立通过 CN 提取特征,将整个图像通过 CN ...

  9. 深度学习论文翻译解析(十三):Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    论文标题:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 标题翻译:基于区域提议(Regi ...

随机推荐

  1. Struts框架笔记04_拦截器_标签库

    目录 1. Struts2的拦截器 1.1 拦截器概述 1.2 拦截器的实现原理 1.3 Struts的执行流程 1.4 拦截器入门 1.4.1 环境搭建 1.4.2 编写拦截器 1.4.3 配置拦截 ...

  2. Metasploit3

    1.之前使用的版本是Metasploit2的版本操作系统是基于Ubuntu的,渗透测测试模块也是基于metasploit的,基本上没有设置,Metasploitable3添加了很多安全机制 ,防火墙和 ...

  3. 16.centos7基础学习与积累-002

    1.从头开始积累centos7系统运用 大牛博客:https://blog.51cto.com/yangrong/p5 互联网公司服务器品牌: dell 服务器品牌: 1U=4.45CM 2010年以 ...

  4. Photozoom图像放大的技术一二事

    平行空间下,未知的可能不仅仅是这个世界,还可能是前所未有的未知的探索.那么对于微小型世界来说,我们就需要借助技术的支撑来发现.photozoom就好比是“电子的放大镜”,对我们清晰图像的放大起到了重要 ...

  5. 云计算/云存储---Ceph和Openstack的cinder模块对接方法

    1.创建存储池 在ceph节点中执行如下语句. #ceph osd pool create volumes 2.配置 OPENSTACK 的 CEPH 客户端 在ceph节点两次执行如下语句,两次{y ...

  6. redis和memcached有什么区别?redis的线程模型是什么?为什么单线程的redis比多线程的memcached效率要高得多(为什么redis是单线程的但是还可以支撑高并发)?

    1.redis和memcached有什么区别? 这个事儿吧,你可以比较出N多个区别来,但是我还是采取redis作者给出的几个比较吧 1)Redis支持服务器端的数据操作:Redis相比Memcache ...

  7. Dubbo基础入门

    Dubbo概述 Dubbo的背景 随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进. 单一应用架构 ...

  8. spring+mybatis通用dao层、service层的实现

    个人理解: 1.mybatis-spring.jar 提供了SqlSessionTemplate类该类可以对数据库进行CRUD操作(底层其实还是SqlSession) 2.我们可以集成SqlSessi ...

  9. 2019-2020-1 20199302《Linux内核原理与分析》第二周作业

    一.实验记录 1.实验代码截屏 本次实验中遇到的一个小问题是: (1)在进行汇编语言编译时,命令行本应是"g/.s*/d ",因为做实验的时候还没有看视频,只是看了书,把" ...

  10. Hadoop 格式化namenode时报错警告:WARN common.Util: Path /data/dfs/name should be specified as a URI in configuration

    格式化namenode时报错警告:WARN common.Util: Path /data/dfs/name should be specified as a URI in configuration ...