1. HashMap的数据结构

数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端。

数组

数组存储区间是连续的,占用内存严重,故空间复杂的很大。但数组的二分查找时间复杂度小,为O(1);数组的特点是:寻址容易,插入和删除困难;

链表

链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N)。链表的特点是:寻址困难,插入和删除容易。

哈希表

那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表。哈希表((Hash table)既满足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便。

  哈希表有多种不同的实现方法,我接下来解释的是最常用的一种方法—— 拉链法,我们可以理解为“链表的数组” ,如图:

  从上图我们可以发现哈希表是由数组+链表组成的,一个长度为16的数组中,每个元素存储的是一个链表的头结点。那么这些元素是按照什么样的规则存储到数组中呢。一般情况是通过hash(key)%len获得,也就是元素的key的哈希值对数组长度取模得到。比如上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。所以12、28、108以及140都存储在数组下标为12的位置。

  HashMap其实也是一个线性的数组实现的,所以可以理解为其存储数据的容器就是一个线性数组。这可能让我们很不解,一个线性的数组怎么实现按键值对来存取数据呢?这里HashMap有做一些处理。

  首先HashMap里面实现一个静态内部类Entry,其重要的属性有 key , value, next,从属性key,value我们就能很明显的看出来Entry就是HashMap键值对实现的一个基础bean,我们上面说到HashMap的基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Entry[]里面。

    /**
     * The table, resized as necessary. Length MUST Always be a power of two.
     */

transient Entry[] table;

2. HashMap的存取实现

既然是线性数组,为什么能随机存取?这里HashMap用了一个小算法,大致是这样实现:

// 存储时:
int hash = key.hashCode(); // 这个hashCode方法这里不详述,只要理解每个key的hash是一个固定的int值
int index = hash % Entry[].length;
Entry[index] = value;

// 取值时:
int hash = key.hashCode();
int index = hash % Entry[].length;
return Entry[index];

 

1)put

 
疑问:如果两个key通过hash%Entry[].length得到的index相同,会不会有覆盖的危险?

  这里HashMap里面用到链式数据结构的一个概念。上面我们提到过Entry类里面有一个next属性,作用是指向下一个Entry。打个比方, 第一个键值对A进来,通过计算其key的hash得到的index=0,记做:Entry[0] = A。一会后又进来一个键值对B,通过计算其index也等于0,现在怎么办?HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,index也等于0,那么C.next = B,Entry[0] = C;这样我们发现index=0的地方其实存取了A,B,C三个键值对,他们通过next这个属性链接在一起。所以疑问不用担心。也就是说数组中存储的是最后插入的元素。到这里为止,HashMap的大致实现,我们应该已经清楚了。

 public V put(K key, V value) {
        if (key == null)
            return putForNullKey(value); //null总是放在数组的第一个链表中
        int hash = hash(key.hashCode());
        int i = indexFor(hash, table.length);
        //遍历链表
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            //如果key在链表中已存在,则替换为新value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
 
        modCount++;
        addEntry(hash, key, value, i);
        return null;

}

void addEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<K,V>(hash, key, value, e); //参数e, 是Entry.next
    //如果size超过threshold,则扩充table大小。再散列
    if (size++ >= threshold)
            resize(2 * table.length);
}

  当然HashMap里面也包含一些优化方面的实现,这里也说一下。比如:Entry[]的长度一定后,随着map里面数据的越来越长,这样同一个index的链就会很长,会不会影响性能?HashMap里面设置一个因子,随着map的size越来越大,Entry[]会以一定的规则加长长度。

2)get

 public V get(Object key) {
        if (key == null)
            return getForNullKey();
        int hash = hash(key.hashCode());
        //先定位到数组元素,再遍历该元素处的链表
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                return e.value;
        }
        return null;
}

3)null key的存取

null key总是存放在Entry[]数组的第一个元素。

   private V putForNullKey(V value) {
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
            if (e.key == null) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;
        addEntry(0, null, value, 0);
        return null;
    }
 
    private V getForNullKey() {
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
            if (e.key == null)
                return e.value;
        }
        return null;

}

 
 
 
 

4)确定数组index:hashcode % table.length取模

HashMap存取时,都需要计算当前key应该对应Entry[]数组哪个元素,即计算数组下标;算法如下:

   /**
     * Returns index for hash code h.
     */
    static int indexFor(int h, int length) {
        return h & (length-1);
    }
 
按位取并,作用上相当于取模mod或者取余%。
这意味着数组下标相同,并不表示hashCode相同。
 

5)table初始大小

 
  public HashMap(int initialCapacity, float loadFactor) {
        .....

 

// Find a power of 2 >= initialCapacity

        int capacity = 1;
        while (capacity < initialCapacity)
            capacity <<= 1;
 
        this.loadFactor = loadFactor;
        threshold = (int)(capacity * loadFactor);
        table = new Entry[capacity];
        init();
    }
 

注意table初始大小并不是构造函数中的initialCapacity!!

而是 >= initialCapacity的2的n次幂!!!!

————为什么这么设计呢?——

3. 解决hash冲突的办法

  1. 开放定址法(线性探测再散列,二次探测再散列,伪随机探测再散列)
  2. 再哈希法
  3. 链地址法
  4. 建立一个公共溢出区

Java中hashmap的解决办法就是采用的链地址法。

4. 再散列rehash过程

当哈希表的容量超过默认容量时,必须调整table的大小。当容量已经达到最大可能值时,那么该方法就将容量调整到Integer.MAX_VALUE返回,这时,需要创建一张新表,将原表的映射到新表中。

   /**
     * Rehashes the contents of this map into a new array with a
     * larger capacity.  This method is called automatically when the
     * number of keys in this map reaches its threshold.
     *
     * If current capacity is MAXIMUM_CAPACITY, this method does not
     * resize the map, but sets threshold to Integer.MAX_VALUE.
     * This has the effect of preventing future calls.
     *
     * @param newCapacity the new capacity, MUST be a power of two;
     *        must be greater than current capacity unless current
     *        capacity is MAXIMUM_CAPACITY (in which case value
     *        is irrelevant).
     */
    void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }
 
        Entry[] newTable = new Entry[newCapacity];
        transfer(newTable);
        table = newTable;
        threshold = (int)(newCapacity * loadFactor);

}

    /**
     * Transfers all entries from current table to newTable.
     */
    void transfer(Entry[] newTable) {
        Entry[] src = table;
        int newCapacity = newTable.length;
        for (int j = 0; j < src.length; j++) {
            Entry<K,V> e = src[j];
            if (e != null) {
                src[j] = null;
                do {
                    Entry<K,V> next = e.next;
                    //重新计算index
                    int i = indexFor(e.hash, newCapacity);
                    e.next = newTable[i];
                    newTable[i] = e;
                    e = next;
                } while (e != null);
            }
        }

}

转自:http://blog.csdn.net/leoleocmm/article/details/38294249

HashMap 实现原理(复习)的更多相关文章

  1. HashMap实现原理及源码分析

    哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,而HashMap的实现原理也常常出 ...

  2. 【JDK源码分析】浅谈HashMap的原理

    这篇文章给出了这样的一道面试题: 在 HashMap 中存放的一系列键值对,其中键为某个我们自定义的类型.放入 HashMap 后,我们在外部把某一个 key 的属性进行更改,然后我们再用这个 key ...

  3. HashMap的原理与实 无锁队列的实现Java HashMap的死循环 red black tree

    http://www.cnblogs.com/fornever/archive/2011/12/02/2270692.html https://zh.wikipedia.org/wiki/%E7%BA ...

  4. JVM里面hashtable和hashmap实现原理

    JVM里面hashtable和hashmap实现原理   文章分类:Java编程 转载 在hashtable和hashmap是java里面常见的容器类, 是Java.uitl包下面的类, 那么Hash ...

  5. 基础进阶(一)之HashMap实现原理分析

    HashMap实现原理分析 1. HashMap的数据结构 数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端. 数组 数组存储区间是连续的,占用内存严重,故空间复杂的很大.但数组的二 ...

  6. Java HashMap工作原理及实现

    Java HashMap工作原理及实现 2016/03/20 | 分类: 基础技术 | 0 条评论 | 标签: HASHMAP 分享到:3 原文出处: Yikun 1. 概述 从本文你可以学习到: 什 ...

  7. HashMap实现原理和源码解析

    哈希表(hash table)也叫散列表,是一种非常重要的数据结构.许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,本文会对java集合框架中的对应实现HashMap的 ...

  8. HashMap实现原理及源码分析(JDK1.7)

    转载:https://www.cnblogs.com/chengxiao/p/6059914.html 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技 ...

  9. HashMap 实现原理

    深入Java集合学习系列:HashMap的实现原理   参考文献 引用文献:深入Java集合学习系列:HashMap的实现原理,大部分参考这篇博客,只对其中进行稍微修改 自己曾经写过的:Hashmap ...

  10. 【JAVA】HashMap的原理及多线程下死循环的原因

    再次翻到以前工作中遇到的一个问题,HashMap在多线程下会出现死循环的问题,以前只是知道会死循环,导致CPU100%把机器拖跨,今天来彻底看看 首先来看下,HashMap的原理:HashMap是一个 ...

随机推荐

  1. php部分--数组(包含指针思想遍历数组);

    1.创建并输出数组 (1)相同数据类型的数组$attr=array(1,2,3,4,5); print_r($attr); echo "<br>"; $sttr1=ar ...

  2. <C Traps and Pitfalls>笔记

    //------------------------------------------------------------------------------ 2.1 理解函数的声明: 编写一个独立 ...

  3. Ubuntu 14.04 关于 TensorFlow 环境的配置

    Ubuntu 14.04 关于 TensorFlow 环境的配置   本教程截图于 TensorFlow 官方文档中文版  https://github.com/jikexueyuanwiki/ten ...

  4. php中定义网站根目录的常用方法

    define('BASE_PATH',str_replace('\\','/',realpath(dirname(__FILE__).'/../')));

  5. C++重载,重写,重定义

    1.重载:重载是在一个类中,函数名一样,参数类型或参数个数不同的一系列函数需要注意的是,与返回类型无关. class Test { public: void show(); void show(int ...

  6. MyBatis入门学习

    所需要jar包:mybatis-3.x.x.jar .如果需要和spring整合,还需要加入相关的包 1:看项目目录 红颜色不要关心 2:按照步骤: 1:加入jar包 2:创建数据源(configur ...

  7. js事件源window.event.srcElement兼容性写法

    <html> <body> <p>一个好处就是 我想让body(或其他元素内)的某些对象响应事件 就不用挨个儿去写 只要在外层上写一个 然后检查event.srcE ...

  8. const, static and readonly

    const, static and readonly http://tutorials.csharp-online.net/const,_static_and_readonly Within a cl ...

  9. 使用druid连接池的超时回收机制排查连接泄露问题

    在工程中使用了druid连接池,运行一段时间后系统出现异常: Caused by: org.springframework.jdbc.CannotGetJdbcConnectionException: ...

  10. org.pentaho.di.ui.core.widget.PasswordTextVar

    package org.pentaho.di.ui.core.widget; import org.eclipse.swt.SWT; import org.eclipse.swt.events.Mod ...