[实变函数]2.1 度量空间 (metric space), $n$ 维 Euclidean 空间
1 回忆: $$\bex \lim_{n\to\infty}a_n=a\lra \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\mbox{ 有 }|a_n-a|<\ve. \eex$$
$\bbR$ 中有 ``距离'' (可以衡量两数的接近程度, 这里是绝对值) 的概念.
2 拓广: 设 $X$ 是一个集合, $d:X\times X\to [0,\infty)$ 满足
(1) 正定性 (positivity): $d(x,y)\geq 0$, $d(x,y)=0\lra x=y$;
(2) 对称性 (symmetry): $d(x,y)=d(y,x)$;
(3) 三角不等式 (triangle inequality): $d(x,y)\leq d(x,z)+d(z,y)$;
则称 $d$ 为 $X$ 上的一个距离 (distance),
$(X,d)$ 称为度量空间 (metric space).
3 对称性 $+$ 三角不等式 $\lra$ $d(x,y)\leq d(x,z)+d(y,z)$.
证明: $ra$ 显然.
$\la$ 取 $z=x$, 有 $$\bex d(x,y)\leq d(x,x)+d(y,x)\ra d(x,y)\leq d(y,x). \eex$$
互换 $x,y$ 的位置而得 $d(x,y)=d(y,x)$.
4 若 $(X,d)$ 是度量空间, $\vno \neq Y\subset X$, 则 $(Y,d)$ 于是度量空间, 称为 $(X,d)$ 的子
空间.
5 例: 在 $\bbR^n$ 中, 对 $$\bex x=(x_1,\cdots,x_n),\quad y=(y_1,\cdots,y_n), \eex$$
定义 $$\bex d(x,y)=\sez{\sum_{i=1}^n (x_i-y_i)^2}^{1/2}, \eex$$
则 $(\bbR^n,d)$ 为度量空间, 称为 $n$ 维 Euclidean 空间, $d$ 称为 Euclidean 距离.
6 邻域、极限及其他.
(1) $U(P_0,\delta)=U(P_0)=\sed{P; d(P,P_0)<\delta}$.
(2) $$\bex \lim_{n\to\infty}P_n=P_0\lra \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\mbox{ 有 }P_n\in U(P_0,\ve). \eex$$
(3) $$\bex d(A,B)=\inf_{P\in A,Q\in B}d(P,Q);\quad diam(E)=\sup_{P\in E,Q\in E}d(P,Q). \eex$$
(4) $$\beex \bea E\mbox{ 有界}&\lra diam(E)<\infty\\ &\lra \exists\ R>0,\ \forall\ x\in E,\ d(x,0)<R. \eea \eeex$$
(5) $n$ 为开、闭区间为 $$\bex \prod_{i=1}^n (a_i,b_i),\quad \prod_{i=1}^n [a_i,b_i], \eex$$
它们都有 ``体积'' $\dps{\prod_{i=1}^n (b_i-a_i)}$.
[实变函数]2.1 度量空间 (metric space), $n$ 维 Euclidean 空间的更多相关文章
- n维立体空间建模
n维立体空间建模,基于网格技术,将整个地球信息整体封装,初始进行网格化,选取某一个网格,进行迭代, 迭代的子项依然是网格,迭代的次数为k,网格最终大小可以指定,这种指定决定了立体块的细化率,假设 ...
- Metric space,open set
目录 引入:绝对值 度量空间 Example: 开集,闭集 引入:绝对值 distance\(:|a-b|\) properties\(:(1)|x| \geq 0\),for all \(x \in ...
- 论文笔记:(NIPS2017)PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
目录 一. 存在的问题 1.提取局部特征的能力 2.点云密度不均问题 二.解决方案 1.改进特征提取方法: (1)采样层(sampling) (2)分组层(grouping) (3)特征提取层(fea ...
- 关于n维和n-1维欧式空间
我们从小就说,"点动成线,线动成面,面动成体",其中的空间的概念到底是啥?之前没有好好想过,在机器学习中多次遇到"空间"."超平面",&qu ...
- Gram 矩阵与向量到子空间的距离
设 $W$ 是 $n$ 维 Euclidean 空间 $V$ 的子空间, $\beta\in V$, 定义 $\beta$ 到 $W$ 的距离 $$\bex \rd (\beta,W)=|\bet ...
- UVA 11297 线段树套线段树(二维线段树)
题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要 不同的处理方式,非叶子形成的 ...
- 【转载】VC维的来龙去脉
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...
- 机器学习基石的泛化理论及VC维部分整理(第五讲)
第五讲 Training versus Testing 一.问题的提出 \(P_{\mathcal{D}}\left [ BAD \mathcal{D} \right ] \leq 2M \cd ...
- c中使用malloc动态申请二维数组
前言 今天写代码的时候,想要动态的申请一个二维数组空间,思索了一段时间才写出来,这里记录一下吧,以后就不至于再浪费时间了.下面以申请int型数组作为例子: 申请一维数组 一维数组的数组名可以看成数组起 ...
随机推荐
- 越狱Season 1-Episode 19: The Key
Season 1, Episode 19: The Key -Kellerman: WeusedtohaveaGreatDane, Dane: 丹麦大狗 我们以前有一只大丹犬 bigandwild. ...
- Linux嵌入式入门
虚拟机Linux系统网络配置: 1.Vmware网络设置 虚拟机设置->网路适配器->网络连接 桥接模式:能提供独立的IP地址的情况下使用 NAT模式:一台计算机只能使用一个I ...
- 黑马程序员——JAVA基础之System,Runtime,Date,Calendar,Math
------- android培训.java培训.期待与您交流! ---------- System: 类中的方法和属性都是静态的. out: 标准输出,默认是控制台. in:标准输入,默认是键盘 ...
- c++关于接口机制和不完全类型的小问题
都和typedef有关 一个是接口机制时用到的 就是所有用到接口的源文件只需包含简单的接口声明 接口的具体实现在其他源文件中实现 接口可以是 //interface.h typedef struct ...
- Python-事件驱动模型代码
#/usr/env/bin python ''' this is document ''' class Event(object): ''' 事件初始化的一个方式 ''' def __init__(s ...
- jquery ajax POST 例子详解
function test(){ $.ajax({ //提交数据的类型 POST GET type:"POST", //提交的网址 url:"testLogin.aspx ...
- 使用swiper和吸顶效果代码
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...
- Bitmap 之 getPixels() 的 stride
学习Graphics中遇到位图(Bitmap)中getPixels()方法,对该方法的用法大体理解,但对其中的stride参数却不明白具体的用法以及用意,现记述过程如下: getPixels()方法的 ...
- 024. asp.net中第一次使用GridView (设置鼠标经过时更换背景色)
1. 前端HTML代码 <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Inde ...
- GridView中实现点击某行的任意位置就选中该行
来源:http://auv2009.blog.163.com/blog/static/68858712200992731010670/ 在 GridView中增加一列:(该列是选择按钮,让其不显示) ...