[实变函数]2.1 度量空间 (metric space), $n$ 维 Euclidean 空间
1 回忆: $$\bex \lim_{n\to\infty}a_n=a\lra \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\mbox{ 有 }|a_n-a|<\ve. \eex$$
$\bbR$ 中有 ``距离'' (可以衡量两数的接近程度, 这里是绝对值) 的概念.
2 拓广: 设 $X$ 是一个集合, $d:X\times X\to [0,\infty)$ 满足
(1) 正定性 (positivity): $d(x,y)\geq 0$, $d(x,y)=0\lra x=y$;
(2) 对称性 (symmetry): $d(x,y)=d(y,x)$;
(3) 三角不等式 (triangle inequality): $d(x,y)\leq d(x,z)+d(z,y)$;
则称 $d$ 为 $X$ 上的一个距离 (distance),
$(X,d)$ 称为度量空间 (metric space).
3 对称性 $+$ 三角不等式 $\lra$ $d(x,y)\leq d(x,z)+d(y,z)$.
证明: $ra$ 显然.
$\la$ 取 $z=x$, 有 $$\bex d(x,y)\leq d(x,x)+d(y,x)\ra d(x,y)\leq d(y,x). \eex$$
互换 $x,y$ 的位置而得 $d(x,y)=d(y,x)$.
4 若 $(X,d)$ 是度量空间, $\vno \neq Y\subset X$, 则 $(Y,d)$ 于是度量空间, 称为 $(X,d)$ 的子
空间.
5 例: 在 $\bbR^n$ 中, 对 $$\bex x=(x_1,\cdots,x_n),\quad y=(y_1,\cdots,y_n), \eex$$
定义 $$\bex d(x,y)=\sez{\sum_{i=1}^n (x_i-y_i)^2}^{1/2}, \eex$$
则 $(\bbR^n,d)$ 为度量空间, 称为 $n$ 维 Euclidean 空间, $d$ 称为 Euclidean 距离.
6 邻域、极限及其他.
(1) $U(P_0,\delta)=U(P_0)=\sed{P; d(P,P_0)<\delta}$.
(2) $$\bex \lim_{n\to\infty}P_n=P_0\lra \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\mbox{ 有 }P_n\in U(P_0,\ve). \eex$$
(3) $$\bex d(A,B)=\inf_{P\in A,Q\in B}d(P,Q);\quad diam(E)=\sup_{P\in E,Q\in E}d(P,Q). \eex$$
(4) $$\beex \bea E\mbox{ 有界}&\lra diam(E)<\infty\\ &\lra \exists\ R>0,\ \forall\ x\in E,\ d(x,0)<R. \eea \eeex$$
(5) $n$ 为开、闭区间为 $$\bex \prod_{i=1}^n (a_i,b_i),\quad \prod_{i=1}^n [a_i,b_i], \eex$$
它们都有 ``体积'' $\dps{\prod_{i=1}^n (b_i-a_i)}$.
[实变函数]2.1 度量空间 (metric space), $n$ 维 Euclidean 空间的更多相关文章
- n维立体空间建模
n维立体空间建模,基于网格技术,将整个地球信息整体封装,初始进行网格化,选取某一个网格,进行迭代, 迭代的子项依然是网格,迭代的次数为k,网格最终大小可以指定,这种指定决定了立体块的细化率,假设 ...
- Metric space,open set
目录 引入:绝对值 度量空间 Example: 开集,闭集 引入:绝对值 distance\(:|a-b|\) properties\(:(1)|x| \geq 0\),for all \(x \in ...
- 论文笔记:(NIPS2017)PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
目录 一. 存在的问题 1.提取局部特征的能力 2.点云密度不均问题 二.解决方案 1.改进特征提取方法: (1)采样层(sampling) (2)分组层(grouping) (3)特征提取层(fea ...
- 关于n维和n-1维欧式空间
我们从小就说,"点动成线,线动成面,面动成体",其中的空间的概念到底是啥?之前没有好好想过,在机器学习中多次遇到"空间"."超平面",&qu ...
- Gram 矩阵与向量到子空间的距离
设 $W$ 是 $n$ 维 Euclidean 空间 $V$ 的子空间, $\beta\in V$, 定义 $\beta$ 到 $W$ 的距离 $$\bex \rd (\beta,W)=|\bet ...
- UVA 11297 线段树套线段树(二维线段树)
题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要 不同的处理方式,非叶子形成的 ...
- 【转载】VC维的来龙去脉
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...
- 机器学习基石的泛化理论及VC维部分整理(第五讲)
第五讲 Training versus Testing 一.问题的提出 \(P_{\mathcal{D}}\left [ BAD \mathcal{D} \right ] \leq 2M \cd ...
- c中使用malloc动态申请二维数组
前言 今天写代码的时候,想要动态的申请一个二维数组空间,思索了一段时间才写出来,这里记录一下吧,以后就不至于再浪费时间了.下面以申请int型数组作为例子: 申请一维数组 一维数组的数组名可以看成数组起 ...
随机推荐
- 关于ServiceLocator ,AdpaterAwareInterface 注入
今天学习zf2 的过程,视频中讲到要把数据库的中的表继承TableGateway中,然后注册在ServiceManager中,但是里面没有$adapter,需要在serviceManger,中配置in ...
- Python笔记本
Python 的主提示符( >>> )和次提示符( ... ).主提示符是解释器告诉你它在等你输入下一个语句,次提示符告诉你解释器正在等待你输入当前语句的其它部分. 下划线(_)在解 ...
- poj3553 拓扑序+排序贪心
题意:有多个任务,每个任务有需要花费的时间和最后期限,任务之间也有一些先后关系,必须先完成某个才能开始某个,对于每个任务,如果没有越期,则超时为0,否则超时为结束时间-最后期限,求总超时时间最小的任务 ...
- GDI+中GIF图片的显示
某位网友曾经问过我GDI+中Gif图像显示的问题,一直没时间给你写,在此致歉.我把这篇文章送给他. 一.GIF格式介绍 1.概述 GIF(Graphics Interchange Format,图形交 ...
- 使用grep恢复被删除文件内容【转】
http://www.cnblogs.com/ggjucheng/archive/2012/10/07/2714311.html Unix/Linux下,最危险的命令恐怕就属rm命令了,每次在root ...
- C++ little errors , Big problem
---------------------------------------------------------------------------------------------------- ...
- Nginx安全配置研究
x00 测试环境 ? 1 2 3 操作系统:CentOS6.5 Web服务器:Nginx1.4.6 Php版本:Php5.4.26 0x01 Nginx介绍 nginx本身不能处理PHP,它只是个we ...
- Instructions函数对照表:02 xmmintrin.h与SSE指令集[转]
更多详情见——http://www.cnblogs.com/zyl910/archive/2012/04/26/md00.htmlSIMD函数整理:00 索引贴 R:寄存器.M:64位MM寄存器:X: ...
- PHP读某一个目录下所有文件和文件夹
废话少说了 直接上代码 <?php function read_dir($dir) { if (!is_dir($dir)) { echo 'not a dir '; return; } if ...
- Python画图形界面
使用QTdesigner 生成.ui文件,输入命令行pyuic4 -o test.py test.ui 在生成的Python文件后面输入下面代码 if __name__=="__main__ ...