CPU和GPU实现julia
 
        主要目的是通过对比,学习研究如何编写CUDA程序。julia的算法还是有一定难度的,但不是重点。由于GPU实现了也是做图像识别程序,所以缺省的就是和OPENCV结合起来。
一、CPU实现(julia_cpu.cpp)
      //julia_cpu 采用cpu实现julia变换
#
.;
     );
     );
    
    cuComplex c(.,.);
    cuComplex a(jx,jy);
    ;i;i)
        {
            ;
        }
    }
    ;
}
;x;y;c;c;
            }
            
        }
    }
    imshow(;
}
 
 
这里的实现,主要是说明julia的算法,它本身是一个递归的,而且具有一定计算复杂度的算法。
二、GPU实现
        为了能够深刻理解这里的技术,我做了一系列的实验。需要注意的是GPU编译非常慢,不知道有什么办法能够加快这个速度。
此外,比较麻烦的就是矩阵的读入读出,因为现在的资料缺乏,所以很多东西还搞不清楚。
        1)CUDA和OPENCV联系起来;(test1.cu)
        CUDA主要还是来做数学运算的,它本身和OPENCV没有必然的联系。一般来说,计算本身在CUDA中,而OPENCV编写相关转换,进行结果显示。这里实现的功能就是读入一幅单色图像,所有像素进行反转。
        编写代码的话,还是基于现有的模板,进行参数的调整,这样来得最快;基于现有的数据不断地调整,这样也能够控制错误。
        注意,CUDA核中,不能用任何OPENCV的函数。目前我只能实现这样的效果,因为多数组如何引入,必须要查更多的资料。
主要就是数组的操作,现在只能做单数组,一旦多维就溢出。
);
    resize(src,src,Size(N,N));
    ;i;i;j;c;c;
}
 
        2)CUDA计算斐波那契数,思考CNN的实现;
        CUDA是否适合斐波那契,像julia这样的,每一个点都是独立的,它很适合;如果能够分出一些块来,应该也是适合的因此,单个的斐波那契运算不适合,但是做到一个数组中,并且以并行化的想法来运算,还是有一定价值的。
        结果报不支持递归,那么在以后运算设计的时候要注意这一点。并行设计从来都不是一个简单的问题,必然有很陡峭的学习曲线,需要分丰富的经验,也有很远大的市场。
       
       但是,CNN的确算的上是一个典型的实现了,它不需要串行的运算,而是在大量的并行的结果之后,选择一个最好的参数,所以CNN可以作为图像领域和CUDA结合的一个典型实现。
       3)CUDA实现julia。
       在前面的基础上,非常顺利
.;
     );
     );
    cuComplex c(.,.);
    cuComplex a(jx,jy);
    ;i;i)
        {
            ;
        }
    }
    ;
}
__device__  )
    {
        )));
    }
}
;
}
;i;
    }
    checkCudaErrors(cudaMalloc((;i;j;c;c;
}
 
 
三、小结
        CUDA编程是一个新的领域,虽然文档中都说不复杂、不复杂的,但是想要大规模应用不可能不复杂。所以先基于现有的例子,将能够跑起来的东西跑起来。然后思考融合,形成自己的东西,这就是生产率。我相信,不需要很多的时间,我就能够使用CUDA的计算功能去接触并解决一些以前无法去做的东西。
        祝成功,愿回顾。

CPU和GPU实现julia的更多相关文章

  1. 浅谈CPU和GPU的区别

    导读: CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景.CPU需要很强的通用性来处理各种不同的数据类型,而GPU面对的则是类型高度统一的.相互无依赖的大规模数据 ...

  2. CPU和GPU性能对比

    计算20000次10000点的fft,分别使用CPU和GPU,得 the running time of cpu is : 2.3696s the running time of gpu is : 0 ...

  3. 图像重采样(CPU和GPU)

    1 前言 之前在写影像融合算法的时候,免不了要实现将多光谱影像重采样到全色大小.当时为了不影响融合算法整体开发进度,其中重采样功能用的是GDAL开源库中的Warp接口实现的. 后来发现GDAL War ...

  4. CPU和GPU的区别

    个人认为CPU和GPU各有自己的适应领域.CPU(Central Processing Unit)计算核心较少,通常是双核.四核.八核,但是拥有大量的共享缓存.预测.乱序执行等优化,可以做逻辑非常复杂 ...

  5. CPU和GPU的差别

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt317 首先需要解释CPU和GPU这两个缩写分别代表什么.CPU即中央处理器, ...

  6. Shader 入门笔记(二) CPU和GPU之间的通信

    渲染流水线的起点是CPU,即应用阶段. 1)把数据加载到显存中 2)设置渲染状态,通俗说这些状态定义了场景中的网格是怎样被渲染的. 3)调用DrawCall,一个命令,CPU通知GPU.(这个命令仅仅 ...

  7. Caffe源码理解2:SyncedMemory CPU和GPU间的数据同步

    目录 写在前面 成员变量的含义及作用 构造与析构 内存同步管理 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 在Caffe源码理解1中介绍了Blob类,其中的数据成 ...

  8. (七) Keras 绘制网络结构和cpu,gpu切换

    视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 首先安装py ...

  9. Shader 入门笔记(二) CPU和GPU之间的通信,渲染流水线

    渲染流水线 1)应用阶段(CPU处理) 首先,准备好场景数据(摄像机位置,视锥体,模型和光源等) 接着,做粗粒度剔除工作. 最后,设置好每个模型的渲染状态(使用的材质,纹理,shader等) 这一阶段 ...

随机推荐

  1. c++l类

    c++类和C#中定义类的方法异同之处: 1. 相同处: 1.1.都需要使用 class标识: 1.2.都包含有成员:函数,属性: 1.3.都有private public protect 标识的成员 ...

  2. 重复点击主界面(TabBar)按钮刷新界面--点击状态栏回到顶部

    1.监听按钮点击   2.判断是否是点击的同一个按钮(记录上次点击的按钮)   3.当重复点击相同按钮时,需要获取当前按钮对应控制器刷新界面      3.1 判断是否重复点击按钮,代码写在哪里?   ...

  3. getch()函数

    这个函数是一个不回显函数,当用户按下某个字符时,函数自动读取,无需按回车,有的C语言命令行程序会用到此函数做游戏,但是这个函数并非标准函数,要注意移植性! 中文名 无 外文名 getch 头文件 co ...

  4. Java初学--无限循环

    利用for循环和while循环分别做到,从键盘读取任意数,输入0自动跳出无限循环,并判断有几个正数几个负数. 1.for循环的无限循环: import java.util.Scanner;//引用Sc ...

  5. Codeforce Round #218 Div2

    A:没个元素的个数少的变成多的和就是了 B:居然被systemtest搓掉了- -分东西,我改的代码,还是shit一样的过的...别人的直接两个操作数相减就可以了! C:二分题- -,没想到比赛时因为 ...

  6. c# 隐藏 控制台应用程序

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.D ...

  7. C++的STL在C#中的应用

    这里主要讲几个重要的STL在C#中的应用:vector, map, hash_map, queue, set, stack, list. vector: 在C#中换成了list using Syste ...

  8. javascript 一些常用的验证

    只能输入数字          onkeyup="this.value=this.value.replace(/[^\d]/g,'')" onafterpaste="th ...

  9. CS2013调试DLL

    需要打开两个项目,一个是Win32Project1,由这个项目创建DLL,注意要在DLL函数前加上__declspec(dllexport),这样就会还配套生成一个.lib 然后再打开一个项目,一般为 ...

  10. [CrunchBang]中文字体美化

    安装必要的字体包 sudo apt-get install ttf-droid ttf-wqy-zenhei xfonts-wqy ttf-wqy-microhei ttf-arphic-ukai t ...