这题也是第二次做,本想第一次做时参考的算法会和老师讲的一样,不想老师讲的算法用在这题感觉还不如思雪园友的算法(http://www.cnblogs.com/sixue/archive/2015/04.html)来的简单,不过老师给的思路是一种挺通用的思路,可以用来解决一系列的问题,但我目前看着有点吃力。我坚持认为对全局变量的使用需十分谨慎,能不用就不用,所以为了不出现全局变量,就无辜多了一串参数。实现代码如下,题目在代码下方

 #include <stdio.h>
#include <stdlib.h> int compare(const void * a, const void * b);
void inOrder(int * a, int n, int * in, int N); int main()
{
// freopen("in.txt", "r", stdin); // for test
int i, N, n;
scanf("%d", &N);
int a[N];
for(i = ; i < N; i++)
{
scanf("%d", &n);
a[i] = n;
} qsort(a, N, sizeof(int), compare);
int in[N + ];
inOrder(a, , in, N);
for(i = ; i <= N; i++)
{
printf("%d", in[i]);
if(i < N)
printf(" ");
else
printf("\n");
}
// fclose(stdin); // for test
return ;
} int compare(const void * a, const void * b)
{
return *(int *)a - *(int *)b;
} void inOrder(int * a, int n, int * in, int N)
{
static int i = ; if(n * <= N)
inOrder(a, * n, in, N);
in[n] = a[i++];
if(n * + <= N)
inOrder(a, n * + , in, N);
}

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input:

10
1 2 3 4 5 6 7 8 9 0

Sample Output:

6 3 8 1 5 7 9 0 2 4

04-树5 Complete Binary Search Tree的更多相关文章

  1. PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  2. PAT题库-1064. Complete Binary Search Tree (30)

    1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...

  3. A1064. Complete Binary Search Tree

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  4. 04-树6 Complete Binary Search Tree(30 分)

    title: 04-树6 Complete Binary Search Tree(30 分) date: 2017-11-12 14:20:46 tags: - 完全二叉树 - 二叉搜索树 categ ...

  5. pat04-树8. Complete Binary Search Tree (30)

    04-树8. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHE ...

  6. PAT 甲级 1064 Complete Binary Search Tree (30 分)(不会做,重点复习,模拟中序遍历)

    1064 Complete Binary Search Tree (30 分)   A Binary Search Tree (BST) is recursively defined as a bin ...

  7. PAT_A1064#Complete Binary Search Tree

    Source: PAT A1064 Complete Binary Search Tree (30 分) Description: A Binary Search Tree (BST) is recu ...

  8. PAT甲级——A1064 Complete Binary Search Tree

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  9. 1064 Complete Binary Search Tree (30分)(已知中序输出层序遍历)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

随机推荐

  1. Implicit Object in JSP

    Implicit Object Description request The HttpServletRequest object associated with the request. respo ...

  2. unity入门笔记

    我于2010年4月1日硕士毕业加入完美时空, 至今5年整.刚刚从一家公司的微端(就是端游技术+页游思想, 具体点就是c++开发, directX渲染, 资源采取所需才会下载)项目的前端主程职位离职, ...

  3. ios开发中的toll-free bridged

    所谓的Toll-free bridging是说您可以在某个框架的方法或函数 同时使用Core Foundatio和Foundation 框架中的某些类型. 很多数据类型支持这一特性,其中包括群体和字符 ...

  4. 经典排序算法---冒泡排序(Bubble Sort)

    原理是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换, 这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束 void Bubble ...

  5. hdu-------1081To The Max

    To The Max Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  6. IntelliSense: 应输入声明的解决方案

    出现问题的原因暂时没搞清楚,只是找到了解决方案,方案如下: 工具-->选项-->文本编辑器-->C/C++-->高级-->禁用自动更新-->True

  7. SQL Server数据库(表的创建)

    表的创建 1.创建列(字段):列名+类型 2.设置主键列:能够唯一表示一条数据 3.设置唯一键:设计--索引/键--添加--唯一键(选择列)--确定 唯一键的内容不能重复 4.外键关系:一张表(从表) ...

  8. struts2视频学习笔记 09-10(struts2处理流程,指定多个struts配置文件)

    课时9 Struts2的处理流程 StrutsPrepareAndExecuteFilter是Struts 2框架的核心控制器,它负责拦截由<url-pattern>/*</url- ...

  9. Oracle - PL/SQL Commands

    第一章:日志管理 1.forcing log switches sql> alter system switch logfile; 2.forcing checkpoints sql> a ...

  10. kafka consumer属性

    consumer属性 group.id:指定consumer group的唯一标识. consumer.id:唯一标识consumer.默认值为null,不指定时会自动生成. zookeeper.co ...