浅谈KL散度
一、第一种理解
相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain)。
KL散度是两个概率分布P和Q差别的非对称性的度量。
KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数。 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布。
根据shannon的信息论,给定一个字符集的概率分布,我们可以设计一种编码,使得表示该字符集组成的字符串平均需要的比特数最少。假设这个字符集是X,对x∈X,其出现概率为P(x),那么其最优编码平均需要的比特数等于这个字符集的熵:
H(X)=∑x∈XP(x)log[1/P(x)]
在同样的字符集上,假设存在另一个概率分布Q(X)。如果用概率分布P(X)的最优编码(即字符x的编码长度等于log[1/P(x)]),来为符合分布Q(X)的字符编码,那么表示这些字符就会比理想情况多用一些比特数。KL-divergence就是用来衡量这种情况下平均每个字符多用的比特数,因此可以用来衡量两个分布的距离。即:
DKL(Q||P)=∑x∈XQ(x)[log(1/P(x))] - ∑x∈XQ(x)[log[1/Q(x)]]=∑x∈XQ(x)log[Q(x)/P(x)]
由于-log(u)是凸函数,因此有下面的不等式
DKL(Q||P) = -∑x∈XQ(x)log[P(x)/Q(x)] = E[-logP(x)/Q(x)] ≥ -logE[P(x)/Q(x)] = - log∑x∈XQ(x)P(x)/Q(x) = 0
即KL-divergence始终是大于等于0的。当且仅当两分布相同时,KL-divergence等于0。
===========================
举一个实际的例子吧:比如有四个类别,一个方法A得到四个类别的概率分别是0.1,0.2,0.3,0.4。另一种方法B(或者说是事实情况)是得到四个类别的概率分别是0.4,0.3,0.2,0.1,那么这两个分布的KL-Distance(A,B)=0.1*log(0.1/0.4)+0.2*log(0.2/0.3)+0.3*log(0.3/0.2)+0.4*log(0.4/0.1)
这个里面有正的,有负的,可以证明KL-Distance()>=0.
从上面可以看出, KL散度是不对称的。即KL-Distance(A,B)!=KL-Distance(B,A)
KL散度是不对称的,当然,如果希望把它变对称,
Ds(p1, p2) = [D(p1, p2) + D(p2, p1)] / 2.
二、第二种理解
今天开始来讲相对熵,我们知道信息熵反应了一个系统的有序化程度,一个系统越是有序,那么它的信息熵就越低,反之就越高。下面是熵的定义
如果一个随机变量的可能取值为
,对应的概率为
,则随机变量
的熵定义为
有了信息熵的定义,接下来开始学习相对熵。
1. 相对熵的认识
相对熵又称互熵,交叉熵,鉴别信息,Kullback熵,Kullback-Leible散度(即KL散度)等。设和
是取值的两个概率概率分布,则
对
的相对熵为
在一定程度上,熵可以度量两个随机变量的距离。KL散度是两个概率分布P和Q差别的非对称性的度量。KL散度是
用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的位元数。 典型情况下,P表示数据的真实分布,Q
表示数据的理论分布,模型分布,或P的近似分布。
2. 相对熵的性质
相对熵(KL散度)有两个主要的性质。如下
(1)尽管KL散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即
(2)相对熵的值为非负值,即
在证明之前,需要认识一个重要的不等式,叫做吉布斯不等式。内容如下
3. 相对熵的应用
相对熵可以衡量两个随机分布之间的距离,当两个随机分布相同时,它们的相对熵为零,当两个随机分布的差别增
大时,它们的相对熵也会增大。所以相对熵(KL散度)可以用于比较文本的相似度,先统计出词的频率,然后计算
KL散度就行了。另外,在多指标系统评估中,指标权重分配是一个重点和难点,通过相对熵可以处理。
三、用在CF中
第一,KLD需要概率(脸颊和1),但是用评分。
第二,后面两项的作用。

浅谈KL散度的更多相关文章
- 【原】浅谈KL散度(相对熵)在用户画像中的应用
最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Ku ...
- ELBO 与 KL散度
浅谈KL散度 一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information dive ...
- MYSQL优化浅谈,工具及优化点介绍,mysqldumpslow,pt-query-digest,explain等
MYSQL优化浅谈 msyql是开发常用的关系型数据库,快速.稳定.开源等优点就不说了. 个人认为,项目上线,标志着一个项目真正的开始.从运维,到反馈,到再分析,再版本迭代,再优化… 这是一个漫长且考 ...
- 浅谈 Fragment 生命周期
版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Fragment 文中如有纰漏,欢迎大家留言指出. Fragment 是在 Android 3.0 中 ...
- 浅谈 LayoutInflater
浅谈 LayoutInflater 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/View 文中如有纰漏,欢迎大家留言指出. 在 Android 的 ...
- 浅谈Java的throw与throws
转载:http://blog.csdn.net/luoweifu/article/details/10721543 我进行了一些加工,不是本人原创但比原博主要更完善~ 浅谈Java异常 以前虽然知道一 ...
- 浅谈SQL注入风险 - 一个Login拿下Server
前两天,带着学生们学习了简单的ASP.NET MVC,通过ADO.NET方式连接数据库,实现增删改查. 可能有一部分学生提前预习过,在我写登录SQL的时候,他们鄙视我说:“老师你这SQL有注入,随便都 ...
- 浅谈WebService的版本兼容性设计
在现在大型的项目或者软件开发中,一般都会有很多种终端, PC端比如Winform.WebForm,移动端,比如各种Native客户端(iOS, Android, WP),Html5等,我们要满足以上所 ...
- 浅谈angular2+ionic2
浅谈angular2+ionic2 前言: 不要用angular的语法去写angular2,有人说二者就像Java和JavaScript的区别. 1. 项目所用:angular2+ionic2 ...
随机推荐
- [.NET 4.5] ADO.NET / ASP.NET 使用 Async 和 Await 异步 存取数据库
此为文章备份,原文出处(我的网站) [.NET 4.5] ADO.NET / ASP.NET 使用 Async 和 Await 异步 存取数据库 http://www.dotblogs.com.tw ...
- async/await的实质理解
async/await关键字能帮助开发者更容易地编写异步代码.但不少开发者对于这两个关键字的使用比较困惑,不知道该怎么使用.本文就async/await的实质作简单描述,以便大家能更清楚理解. 一.a ...
- 在openSUSE13.2上gem install rails -v 4.1成功,但是之后不存在rails命令解决
解决方案为,不要用sudo gem install就好了,卧槽
- EmguCV学习——简单算法 差分与高斯
公司项目需要检测运动物体,我对opencv也没啥研究,google了好久看了好多方法,最简单的就是差分与高斯背景建模了. 旁边搞c++的同事正在搞更nb的算法,等出来了 我再转成C#版的分享. 先看差 ...
- 仿SDWebImage
仿SDWebImage 目标:模拟 SDWebImage 的实现 说明:整体代码与之前博客上的演练代码的基本一致,只是编写顺序会有变化! 在模仿 SDWebImage 之前,首先需要补充一个知识点:N ...
- C/C++走过的坑(基础问题篇)
1.有符号int与无符号int比较 #define TOTOL_ELEMENTS (sizeof(a) / sizeof(a[0]) ); int main() { int a[] = {23,24, ...
- oracle DML错误日志(笔记)
DML错误日志是oracle10gR2引入的一个类似于SQL*Loader的错误日志功能.它的基本原理是把任何可能导致语句失败的记录转移,放到一张错误日志表中. 具体使用如下: 1.使用DBMS_ER ...
- windows32位下安装mongodb
下载mongodb:http://downloads.mongodb.org/win32/mongodb-win32-i386-2.4.5.zip 给mongodb指定一个数据存放路径:这里我们放在m ...
- 用js进行日期的加减
如题,开始查了查js的使用文档,但没发现可以直接用的函数,于是就想自己写函数来着,这就要涉及到每个月天数的判断,如果是2月份的话,还要涉及到闰年的判断,虽然不复杂但我想js应该不会这么低级,于是查了下 ...
- IOS中 如何去除Tabview里面cell之间的下划线
可以利用Tabview的separatorStyle属性来设置,选择其中的UITableViewCellSeparatorStyleNone 即可去除cell之间的下划线 self.tableView ...