中国剩余定理/扩展欧几里得


  题目大意:求一般模线性方程组的解(不满足模数两两互质)

  solution:对于两个方程 \[ \begin{cases} m \equiv r_1 \pmod {a_1} \\ m \equiv r_2 \pmod{a_2} \end{cases} \] 我们可以列出式子 $$ a_1x+r_1=a_2y+r_2 $$ 利用扩展欧几里得解出一个可行解$M'$。那么我们就可以将两个限制条件合为一个: $$ m \equiv M' \pmod{ lcm(a_1,a_2)} $$ 这样我们依次合并下去即可得到答案啦~(话说代码里那段处理的过程我还没看懂……

代码:(copy自http://www.cnblogs.com/Missa/archive/2013/06/01/3112536.html

 Source Code
Problem: User: sdfzyhy
Memory: 676K Time: 0MS
Language: G++ Result: Accepted Source Code //POJ 2891
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std;
typedef long long LL;
inline LL getLL(){
LL r=,v=; char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-')r=-;
for(; isdigit(ch);ch=getchar()) v=v*+ch-'';
return r*v;
}
const int N=1e5+,INF=~0u>>;
/******************template*********************/
LL a[N],r[N],n;
void exgcd(LL a,LL b,LL &d,LL &x,LL &y){
if (!b){d=a;x=;y=;}
else{ exgcd(b,a%b,d,y,x);y-=(a/b)*x;}
}
LL ex_CRT(LL *m,LL *r,int n){
LL M=m[],R=r[],x,y,d;
F(i,,n){
exgcd(M,m[i],d,x,y);
if ((r[i]-R)%d) return -;
x = (r[i] - R) / d * x % (m[i] / d);
R += x * M;
M = M / d * m[i];
R %= M;
}
return R > ? R :R + M;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("2891.in","r",stdin);
freopen("2891.out","w",stdout);
#endif
while(scanf("%lld",&n)!=EOF){
F(i,,n) a[i]=getLL(),r[i]=getLL();
printf("%lld\n",ex_CRT(a,r,n));
}
return ;
}

【POJ】【2891】Strange Way to Express Integers的更多相关文章

  1. 一本通1635【例 5】Strange Way to Express Integers

    1635:[例 5]Strange Way to Express Integers sol:貌似就是曹冲养猪的加强版,初看感觉非常没有思路,经过一番艰辛的***,得到以下的结果 随便解释下给以后的自己 ...

  2. 【POJ2891】Strange Way to Express Integers(拓展CRT)

    [POJ2891]Strange Way to Express Integers(拓展CRT) 题面 Vjudge 板子题. 题解 拓展\(CRT\)模板题. #include<iostream ...

  3. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  4. poj——2891 Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839 ...

  5. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  6. poj 2981 Strange Way to Express Integers (中国剩余定理不互质)

    http://poj.org/problem?id=2891 Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 13 ...

  7. poj Strange Way to Express Integers 中国剩余定理

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 8193   ...

  8. Strange Way to Express Integers(中国剩余定理+不互质)

    Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & ...

  9. Strange Way to Express Integers

    I. Strange Way to Express Integers 题目描述 原题来自:POJ 2891 给定 2n2n2n 个正整数 a1,a2,⋯,ana_1,a_2,\cdots ,a_na​ ...

  10. POJ2891 Strange Way to Express Integers

    题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...

随机推荐

  1. [leetcode]_Remove Duplicates from Sorted Array II

    题目:一个有序数组,要求保证数组中的每个元素不能超过2个.  输入:A = [1,1,1,2,2,3]  输出:length = 5, and A is now [1,1,2,2,3] 思路:双指针 ...

  2. 第一节 MongoDB介绍及下载与安装

    引言 MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的.他支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类 ...

  3. php手册学习

    整型:int   转换为整型:intval(str)  32位最大值64位最大值 不存在整除语法:应用round();四舍五入.integer去除小数. $a = 1234; //十进制数 $a = ...

  4. afddaf

    //import javax.swing.*; import javax.swing.JFrame; import javax.swing.JButton; import javax.swing.JL ...

  5. SQLserver查询数据库所有字段-表名

    SELECT * FROM INFORMATION_SCHEMA.columns WHERE TABLE_NAME='Account' SELECT (case when a.colorder=1 t ...

  6. Mybatis 实现传入参数是表名

    <select id="totals" resultType="string"> select count(*) from ${table} < ...

  7. 【js类库Raphaël】基于svg中的path画40%表示的环型图

     一.可供参考的文档资料. raphaeljs官网:http://raphaeljs.com/ w3c关于path的介绍:http://www.w3.org/TR/2003/REC-SVG11-200 ...

  8. 关于table元素的认识

    表格是网页上最常见的元素,但是,现在对很多刚入行的前端们那是谈table色变.那是为啥?这是表格的框架的简单.明了.在传统的网页中使用没有边框的表格来排版是非常流行.在web标准逐渐深入设计领域以后, ...

  9. Hadoop和大数据:60款顶级大数据开源工具

    一.Hadoop相关工具 1. Hadoop Apache的Hadoop项目已几乎与大数据划上了等号.它不断壮大起来,已成为一个完整的生态系统,众多开源工具面向高度扩展的分布式计算. 支持的操作系统: ...

  10. meteor 安装 android sdk慢的改进方法

    网上方法很多,最后总结一下比较靠谱的一个,到~/.meteor/android_bundle/ 目录下, 执行tools/android,手动下载 API 19 和 intel X86 Atom Sy ...