ACM/ICPC 之 最小割转网络流(POJ3469)
重点:构图
//最小割转网络流
//邻接表+Dinic
//Time:5797Ms Memory:6192K
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
#define MAXN 20005
#define MAXM 500005
#define INF 0x3f3f3f3f
struct Edge{
int v, w, next;
Edge(){}
Edge(int vv, int ww, int nn):v(vv), w(ww), next(nn){}
}e[MAXM];
int n,m;
int s,t;
int h[MAXN], le;
int d[MAXN];
void add(int u, int v, int w)
{
e[le] = Edge(v, w, h[u]); h[u] = le++;
}
bool bfs()
{
memset(d, -1, sizeof(d));
queue<int> q;
q.push(s); d[s] = 0;
while(!q.empty()){
int cur = q.front();
q.pop();
for(int i = h[cur]; i != -1; i = e[i].next)
{
int v = e[i].v;
if(d[v] == -1 && e[i].w)
{
d[v] = d[cur] + 1;
if(v == t) return true;
q.push(v);
}
}
}
return false;
}
int dfs(int x, int sum)
{
if(x == t || sum == 0) return sum;
int src = sum;
for(int i = h[x]; i != -1; i = e[i].next)
{
int v = e[i].v;
if(d[v] == d[x] + 1 && e[i].w){
int tmp = dfs(v, min(e[i].w, sum));
e[i].w -= tmp;
e[i^1].w += tmp;
sum -= tmp;
}
}
return src - sum;
}
int Dinic()
{
int maxFlow = 0;
while(bfs())
maxFlow += dfs(s, INF);
return maxFlow;
}
int main()
{
//freopen("in.txt", "r", stdin);
memset(h,-1,sizeof(h));
scanf("%d%d", &n,&m);
s = 0; t = n+1;
for(int i = 1; i <= n; i++)
{
int a,b;
scanf("%d%d", &a,&b);
add(s, i, a); add(i, s, 0);
add(i, t, b); add(t, i, 0);
}
for(int i = 1; i <= m; i++)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add(u, v, w); add(v, u, w);
}
printf("%d\n", Dinic());
return 0;
}
ACM/ICPC 之 最小割转网络流(POJ3469)的更多相关文章
- 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)
[BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...
- 【BZOJ1797】[AHOI2009]最小割(网络流)
[BZOJ1797][AHOI2009]最小割(网络流) 题面 BZOJ 洛谷 题解 最小割的判定问题,这里就当做记结论吧.(源自\(lun\)的课件) 我们先跑一遍最小割,求出残量网络.然后把所有还 ...
- 【bzoj2229】[Zjoi2011]最小割 分治+网络流最小割
题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分 ...
- bzoj1391 最大权闭合子图(also最小割、网络流)
一道裸的最小割的题,写一下只是练练手. 表示被卡M,RE不开心.一道裸题至于吗? 再次复习一下最大权闭合子图: 1.每一个点若为正权,与源点连一条容量为绝对值权值的边.否则连向汇点一条容量为绝对值权值 ...
- [bzoj4519][Cqoi2016]不同的最小割_网络流_最小割_最小割树
不同的最小割 bzoj-4519 Cqoi-2016 题目大意:题目链接. 注释:略. 想法: 我们发现这和最小割那题比较像. 我们依然通过那个题说的办法一样,构建最小割树即可. 接下来就是随便怎么处 ...
- [bzoj2229][Zjoi2011]最小割_网络流_最小割树
最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...
- bzoj1797: [Ahoi2009]Mincut 最小割(网络流,缩点)
传送门 首先肯定要跑一个最小割也就是最大流 然后我们把残量网络tarjan,用所有没有满流的边来缩点 一条边如果没有满流,那它就不可能被割了 一条边如果所属的两个强联通分量不同,它就可以被割 一条边如 ...
- P4126 [AHOI2009]最小割(网络流+tarjan)
P4126 [AHOI2009]最小割 边$(x,y)$是可行流的条件: 1.满流:2.残量网络中$x,y$不连通 边$(x,y)$是必须流的条件: 1.满流:2.残量网络中$x,S$与$y,T$分别 ...
- P4126-[AHOI2009]最小割【网络流,tarjan】
正题 题目链接:https://www.luogu.com.cn/problem/P4126 题目大意 给出\(n\)个点\(m\)条边的一张有向图和起点终点.对于每条边求其是否是最小割的可行割/必须 ...
随机推荐
- [[iso教程]] 《4个月ios实体教程》全网最新、最全ios视频教程
全网最新.最全ios视频教程 内容简介 <ios实体教程>主要介绍如何使用iOS提供的强大工具集创建iOS应用.全视频对iOS操作系统做了全面的介绍,首先讲解如何构建应用程序的用户界面,涵 ...
- js 运算符
一.算术运算符: 1.运算符: “+”:功能:对数字进行代数求和:对字符串进行连接操作:将一个数值转换为字符串(数值+空字符串). “-”:功能:对操作数进行取反操作:对数字进行减法操作:将字符串转换 ...
- Java 8新特性终极指南
目录结构 介绍 Java语言的新特性 2.1 Lambdas表达式与Functional接口 2.2 接口的默认与静态方法 2.3 方法引用 2.4 重复注解 2.5 更好的类型推测机制 2.6 扩展 ...
- java IO流复制图片
一.使用字节流复制图片 //字节流方法 public static void copyFile()throws IOException { //1.获取目标路径 //(1)可以通过字符串 // Str ...
- Python基础-三次用户验证登录购买商品程序
需求: 一:三次登录锁定 1.用户信息存放于文件中 2.尝试三次都失败,锁定用户 二.购物车功能要求: 要求用户输入总资产,例如:2000显示商品列表,让用户根据序号选择商品,加入购物车购买,如果商品 ...
- Tp缓存
系统默认的缓存方式是采用File方式缓存,我们可以在项目配置文件里面定义其他的缓存方式,例如,修改默认的缓存方式为Xcache(当然,你的环境需要支持Xcache) 对于File方式缓存下的缓存目录下 ...
- [转]Eclipse启动Tomcat时45秒超时解决方法
原文地址:http://it.oyksoft.com/post/6577/ Eclipse启动Tomcat时,默认配置的启动超时时长为45秒.假若项目启动超过45秒将会报错.两种解决方法:1.改XML ...
- Asp.Net 自定义储存Session方式
介绍 由于针对于自定义Session存储方式比较少,所以整理了使用自定义Session的方式.用于构建自定义会话存储提供程序代码,而不是使用默认的 SessionStore 介绍 背景 本文使用的是m ...
- BZOJ 4698: Sdoi2008 Sandy的卡片
4698: Sdoi2008 Sandy的卡片 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 106 Solved: 40[Submit][Stat ...
- git 代码更新
第一:先说首次使用 意思就是这个文件夹中的代码你还没有向GITHUB提交过代码 cd /home/test(假如 test就是你的用户名)/githubtest(这是个文件夹,你可以提前先建立好,这个 ...