Rigid motion segmentation
In computer vision, rigid motion segmentation is the process of separating regions, features, or trajectories from a video sequence into coherent subsets of space and time. These subsets correspond to independent rigidly moving objects in the scene. The goal of this segmentation is to differentiate and extract the meaningful rigid motion from the background and analyze it. Image segmentation techniques labels the pixels to be a part of pixels with certain characteristics at a particular time. Here, the pixels are segmented depending on its relative movement over a period of time i.e. the time of the video sequence.
There are a number of methods that have been proposed to do so. There is no consistent way to classify motion segmentation due to its large variation in literature. Depending on the segmentation criterion used in the algorithm it can be broadly classified into the following categories: image difference, statistical methods, wavelets, layering, optical flow and factorization. Moreover depending on the number of views required the algorithms can be two or multi view-based. Rigid motion segmentation has found an increase in its application over the recent past with rise in surveillance and video editing. These algorithms are discussed further.
Rigid motion segmentation的更多相关文章
- CVPR2013总结
前不久CVPR的结果出来了,首先恭喜我一个已经毕业工作的师弟中了一篇文章.完整的文章列表已经在CVPR的主页上公布了(链接),今天把其中一些感兴趣的整理一下,虽然论文下载的链接大部分还都没出来,不过可 ...
- Improving RGB-D SLAM in dynamic environments: A motion removal approach
一.贡献 (1)提出一种针对RGB-D的新的运动分割算法 (2)运动分割采用矢量量化深度图像 (3)数据集测试,并建立RGB-D SLAM系统 二.Related work [1]R.K. Namde ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- Computer Graphics Research Software
Computer Graphics Research Software Helping you avoid re-inventing the wheel since 2009! Last update ...
- ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...
- CVPR 2017 Paper list
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...
- Discrete.Differential.Geometry-An.Applied.Introduction(sig2008)笔记
-------------------------------------------------------------- Chapter 1: Introduction to Discrete D ...
- matlab示例程序--Motion-Based Multiple Object Tracking--卡尔曼多目标跟踪程序--解读
静止背景下的卡尔曼多目标跟踪 最近学习了一下多目标跟踪,看了看MathWorks的关于Motion-Based Multiple Object Tracking的Documention. 官网链接:h ...
- MHI ,运动历史图像的的获取[下载自CSDN]
#include "cv.h" #include "highgui.h" #include "stdlib.h" #include &quo ...
随机推荐
- 折半查找(java)(边学习边更新)
---恢复内容开始--- class ArrayTest3 { public static void main(String[] args) { //int [] arr=new int[]{54,4 ...
- easyui 日期控件清空值
最近用了Easyui的日期控件datebox,项目中要将选中值清空,于是就研究了一下. 1,调用方法清空 $('#yourId').combo('setText',''); 2,更改js文件 从官网下 ...
- What's the difference between <b> and <strong>, <i> and <em> in HTML/XHTML? When should you use each?
ref:http://stackoverflow.com/questions/271743/whats-the-difference-between-b-and-strong-i-and-em The ...
- windows下的c语言和linux 下的c语言以及C标准库和系统API
1.引出我们的问题? 标准c库都是一样的!大家想必都在windows下做过文件编程,在linux下也是一样的函数名,参数都一样.当时就有了疑问,因为我们非常清楚 其本质是不可能一样的,源于这是俩个操作 ...
- slide效果
html和js部分 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w ...
- Java-输入输出流
JAVA-输入输出流 1.输入输出: 输入/输出(Input/Output)是指对某个设备或环境进行数据的输入或输出.任何语言都有输入输出的功能,在Java程序中,是通过流来完成输入和输出的,它通过J ...
- Linux截屏工具scrot用法详细介绍
Scrot是Linux命令行中使用的截图工具,能够进行全屏.选取等操作,下面小编将针对Scrot截图工具的用法给大家做个详细介绍,通过操作实例来学习Scrot的使用. 在Linux中安装Scrot ...
- 浅析word-break work-wrap区别
word-break:[断词] 定义:规定自动换行的处理方法. 注:通过word-break使用,可以实现让浏览器在任意位置换行. 语法:word-break: normal|break-all| ...
- python走起之第十二话
1. ORM介绍 orm英文全称object relational mapping,就是对象映射关系程序,简单来说我们类似python这种面向对象的程序来说一切皆对象,但是我们使用的数据库却都是关系型 ...
- Linux英文全称
su:Swith user 切换用户,切换到root用户cat: Concatenate 串联uname: Unix name 系统名称df: Disk free 空余硬盘du: Disk u ...