最近在看Leveldb源码,里面用到LRU(Least Recently Used)缓存,所以自己动手来实现一下。LRU Cache通常实现方式为Hash Map + Double Linked List,我使用std::map来代替哈希表。

实现代码如下:

#include <iostream>
#include <map>
#include <assert.h> using namespace std; // define double linked list node
template<class K, class V>
struct Node{
K key;
V value;
Node *pre_node;
Node *nxt_node;
Node() : key(K()), value(V()), pre_node(0), nxt_node(0){}
}; // define LRU cache.
template<class K, class V>
class LRUCache{
public:
typedef Node<K, V> CacheNode;
typedef map<K, CacheNode*> HashTable; LRUCache(const int size) : capacity(size), count(0), head(0), tail(0){
head = new CacheNode;
tail = new CacheNode;
head->nxt_node = tail;
tail->pre_node = head;
}
~LRUCache(){
HashTable::iterator itr = key_node_map.begin();
for (itr; itr != key_node_map.end(); ++itr)
delete itr->second;
delete head;
delete tail;
} void put(const K &key, const V &value){
// check if key already exist.
HashTable::const_iterator itr = key_node_map.find(key);
if (itr == key_node_map.end()){
CacheNode *node = new CacheNode;
node->key = key;
node->value = value;
if (count == capacity)
{
CacheNode *tail_node = tail->pre_node;
extricateTheNode(tail_node);
key_node_map.erase(tail_node->key);
delete tail_node;
count--;
} key_node_map[key] = node;
count++;
moveToHead(node);
}
else{
itr->second->value = value;
extricateTheNode(itr->second);
moveToHead(itr->second);
}
} V get(const K &key){
// check if key already exist.
HashTable::const_iterator itr = key_node_map.find(key);
if (itr == key_node_map.end()){
return V();
}
else{
extricateTheNode(itr->second);
moveToHead(itr->second);
return itr->second->value;
}
} void print(){
if (count == 0)
cout << "Empty cache." << endl; cout << "Cache information:" << endl;
cout << " " << "capacity: " << capacity << endl;
cout << " " << "count: " << count << endl;
cout << " " << "map size: " << key_node_map.size() << endl;
cout << " " << "keys: ";
CacheNode *node = head;
while (node->nxt_node != tail)
{
cout << node->nxt_node->key << ",";
node = node->nxt_node;
}
cout << endl;
} private:
void moveToHead(CacheNode *node){
assert(head);
node->pre_node = head;
node->nxt_node = head->nxt_node;
head->nxt_node->pre_node = node;
head->nxt_node = node;
}
void extricateTheNode(CacheNode *node){ // evict the node from the list.
assert(node != head && node != tail);
node->pre_node->nxt_node = node->nxt_node;
node->nxt_node->pre_node = node->pre_node;
} private:
int capacity;
int count;
Node<K, V> *head;
Node<K, V> *tail;
HashTable key_node_map;
}; int main()
{
LRUCache<int, int> my_cache(4); for (int i = 0; i < 20; ++i)
{
int key = rand() % 10 + 1;
int value = key * 2;
cout << "Put[" << key << "," << value << "]>>>" << endl;
my_cache.put(key, value);
my_cache.print();
} for (int i = 0; i < 20; ++i)
{
int key = rand() % 10 + 1;
int value = my_cache.get(key);
cout << "Get value of " << key << ": " << value << ".>>>" << endl;
my_cache.print();
} return 0;
}

LRU Cache实现的更多相关文章

  1. [LeetCode] LRU Cache 最近最少使用页面置换缓存器

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  2. 【leetcode】LRU Cache

    题目简述: Design and implement a data structure for Least Recently Used (LRU) cache. It should support t ...

  3. LeetCode:LRU Cache

    题目大意:设计一个用于LRU cache算法的数据结构. 题目链接.关于LRU的基本知识可参考here 分析:为了保持cache的性能,使查找,插入,删除都有较高的性能,我们使用双向链表(std::l ...

  4. 【leetcode】LRU Cache(hard)★

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  5. [LintCode] LRU Cache 缓存器

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  6. LRU Cache [LeetCode]

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  7. 43. Merge Sorted Array && LRU Cache

    Merge Sorted Array OJ: https://oj.leetcode.com/problems/merge-sorted-array/ Given two sorted integer ...

  8. LeetCode——LRU Cache

    Description: Design and implement a data structure for Least Recently Used (LRU) cache. It should su ...

  9. LRU Cache

    LRU Cache 题目链接:https://oj.leetcode.com/problems/lru-cache/ Design and implement a data structure for ...

随机推荐

  1. 报错记录:getOutputStream() has already been called for this response

    仅作记录:参考文章:http://www.blogjava.net/vickzhu/archive/2008/11/03/238337.html 报错信息: java.lang.IllegalStat ...

  2. BIOS MCSDK 2.0 学习笔记(二)————使用Platform Library创建工程

    [TOC] Platform Library提供了一组适用于开发板的API函数.我们可以使用它来快速入手开发板. 1.启动CCS,建立一个空的工程 2.添加include路径 "C:\Pro ...

  3. 关于ViewPager、ViewFilpper、ViewFlow三种实现水平向滑动方式的比较

    ViewPagerViewPager类提供了多界面切换的新效果.新效果有如下特征:[1] 当前显示一组界面中的其中一个界面.[2] 当用户通过左右滑动界面时,当前的屏幕显示当前界面和下一个界面的一部分 ...

  4. 使用Axis2建立WebService

    Axis是apache重量级的WebService框架,虽然相比Xfire和CXF而言相对比较臃肿,但是企业中最常用的就是Axis,Axis2是Axis的升级版:   建立一个最简单的Axis2  W ...

  5. 转载:《TypeScript 中文入门教程》

    缘由 事情是这样的,我想搜索 TypeScript 中文教程,结果在 https://www.baidu.com , https://cn.bing.com ,上都找不到官方的翻译,也没有一个像样的翻 ...

  6. html/css小练习3

    效果图:

  7. Python:循环语句

    while 在某种条件下,执行某段程序 >>> w=0 >>> while w<5: ... print 'w :',w ... w=w+1 ... w : ...

  8. Linux文件的建立、复制、删除和移动命令

    mkdir命令一.mkdir 命令使用权限 所有用户都可以在终端使用 mkdir 命令在拥有权限的文件夹创建文件夹或目录. 二.mkdir 命令使用格式 格式: mkdir [选项] DirName ...

  9. [转]搭建高可用mongodb集群(四)—— 分片

    按照上一节中<搭建高可用mongodb集群(三)—— 深入副本集>搭建后还有两个问题没有解决: 从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的 ...

  10. Transport Block Size, Throughput and Code rate-----http://www.simpletechpost.com/2012/12/transport-block-size-code-rate-protocol.html

    Transport Block Size, Throughput and Code rate   Since the size of transport block is not fixed, oft ...