Python开发【十一章】:RabbitMQ队列
RabbitMQ队列
rabbitMQ是消息队列;想想之前的我们学过队列queue:threading queue(线程queue,多个线程之间进行数据交互)、进程queue(父进程与子进程进行交互或者同属于同一父进程下的多个子进程进行交互);如果两个独立的程序,那么之间是不能通过queue进行交互的,这时候我们就需要一个中间代理即rabbitMQ
消息队列:
- RabbitMQ
- ZeroMQ
- ActiveMQ
- ...........
原理:
1、安装和基本使用
安装RabbitMQ服务 http://www.rabbitmq.com/install-standalone-mac.html
python安装RabbitMQ模块
pip install pika
or
easy_install pika
or
源码 https://pypi.python.org/pypi/pika
2、实现最简单的队列通信
发送端:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() #声明一个管道(管道内发消息) channel.queue_declare(queue='lzl') #声明queue队列 channel.basic_publish(exchange='',
routing_key='lzl', #routing_key 就是queue名
body='Hello World!'
)
print("Sent 'Hello,World!'")
connection.close() #关闭
接收端:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='lzl') def callback(ch,method,properties,body):
print(ch,method,properties)
#ch:<pika.adapters.blocking_connection.BlockingChannel object at 0x002E6C90> 管道内存对象地址
#methon:<Basic.Deliver(['consumer_tag=ctag1.03d155a851b146f19cee393ff1a7ae38', #具体信息
# 'delivery_tag=1', 'exchange=', 'redelivered=False', 'routing_key=lzl'])>
#properties:<BasicProperties>
print("Received %r"%body) channel.basic_consume(callback, #如果收到消息,就调用callback函数处理消息
queue="lzl",
no_ack=True) #接受到消息后不返回ack,无论本地是否处理完消息都会在队列中消失
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming() #开始收消息
注:windows连linux上的rabbitMQ会出现报错,需要提供用户名密码
3、RabbitMQ消息分发轮询
先启动消息生产者,然后再分别启动3个消费者,通过生产者多发送几条消息,你会发现,这几条消息会被依次分配到各个消费者身上
在这种模式下,RabbitMQ会默认把p发的消息公平的依次分发给各个消费者(c),跟负载均衡差不多
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() #声明一个管道(管道内发消息) channel.queue_declare(queue='lzl') #声明queue队列 channel.basic_publish(exchange='',
routing_key='lzl', #routing_key 就是queue名
body='Hello World!'
)
print("Sent 'Hello,World!'")
connection.close() #关闭
pubulish.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='lzl') def callback(ch,method,properties,body):
print(ch,method,properties)
#ch:<pika.adapters.blocking_connection.BlockingChannel object at 0x002E6C90> 管道内存对象地址
#methon:<Basic.Deliver(['consumer_tag=ctag1.03d155a851b146f19cee393ff1a7ae38', #具体信息
# 'delivery_tag=1', 'exchange=', 'redelivered=False', 'routing_key=lzl'])>
#properties:<BasicProperties>
print("Received %r"%body) channel.basic_consume(callback, #如果收到消息,就调用callback函数处理消息
queue="lzl",
no_ack=True)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming() #开始收消息
consume.py
通过执行pubulish.py和consume.py可以实现上面的消息公平分发,那假如c1收到消息之后宕机了,会出现什么情况呢?rabbitMQ是如何处理的?现在我们模拟一下
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() #声明一个管道(管道内发消息) channel.queue_declare(queue='lzl') #声明queue队列 channel.basic_publish(exchange='',
routing_key='lzl', #routing_key 就是queue名
body='Hello World!'
)
print("Sent 'Hello,World!'")
connection.close() #关闭
publish.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika,time connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='lzl') def callback(ch,method,properties,body):
print("->>",ch,method,properties)
time.sleep(15) # 模拟处理时间
print("Received %r"%body) channel.basic_consume(callback, #如果收到消息,就调用callback函数处理消息
queue="lzl",
no_ack=True)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming() #开始收消息
consume.py
在consume.py的callback函数里增加了time.sleep模拟函数处理,通过上面程序进行模拟发现,c1接收到消息后没有处理完突然宕机,消息就从队列上消失了,rabbitMQ把消息删除掉了;如果程序要求消息必须要处理完才能从队列里删除,那我们就需要对程序进行处理一下
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() #声明一个管道(管道内发消息) channel.queue_declare(queue='lzl') #声明queue队列 channel.basic_publish(exchange='',
routing_key='lzl', #routing_key 就是queue名
body='Hello World!'
)
print("Sent 'Hello,World!'")
connection.close() #关闭
publish.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika,time connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='lzl') def callback(ch,method,properties,body):
print("->>",ch,method,properties)
#time.sleep(15) # 模拟处理时间
print("Received %r"%body)
ch.basic_ack(delivery_tag=method.delivery_tag) channel.basic_consume(callback, #如果收到消息,就调用callback函数处理消息
queue="lzl",
)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming() #开始收消息
consume.py
通过把consume.py接收端里的no_ack
=
True去掉之后并在callback函数里面添加
ch.basic_ack(delivery_tag
=
method.delivery_tag
,就可以实现消息不被处理完不能在队列里清除
查看消息队列数:
4、消息持久化
如果消息在传输过程中rabbitMQ服务器宕机了,会发现之前的消息队列就不存在了,这时我们就要用到消息持久化,消息持久化会让队列不随着服务器宕机而消失,会永久的保存下去
发送端:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() #声明一个管道(管道内发消息) channel.queue_declare(queue='lzl',durable=True) #队列持久化 channel.basic_publish(exchange='',
routing_key='lzl', #routing_key 就是queue名
body='Hello World!',
properties=pika.BasicProperties(
delivery_mode = 2 #消息持久化
)
)
print("Sent 'Hello,World!'")
connection.close() #关闭
接收端:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika,time connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='lzl',durable=True) def callback(ch,method,properties,body):
print("->>",ch,method,properties)
time.sleep(15) # 模拟处理时间
print("Received %r"%body)
ch.basic_ack(delivery_tag=method.delivery_tag) channel.basic_consume(callback, #如果收到消息,就调用callback函数处理消息
queue="lzl",
)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming() #开始收消息
5、消息公平分发
如果Rabbit只管按顺序把消息发到各个消费者身上,不考虑消费者负载的话,很可能出现,一个机器配置不高的消费者那里堆积了很多消息处理不完,同时配置高的消费者却一直很轻松。为解决此问题,可以在各个消费者端,配置perfetch=1,意思就是告诉RabbitMQ在我这个消费者当前消息还没处理完的时候就不要再给我发新消息了
channel.basic_qos(prefetch_count=1)
带消息持久化+公平分发
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() #声明一个管道(管道内发消息) channel.queue_declare(queue='lzl',durable=True) #队列持久化 channel.basic_publish(exchange='',
routing_key='lzl', #routing_key 就是queue名
body='Hello World!',
properties=pika.BasicProperties(
delivery_mode = 2 #消息持久化
)
)
print("Sent 'Hello,World!'")
connection.close() #关闭
pubulish.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika,time connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='lzl',durable=True) def callback(ch,method,properties,body):
print("->>",ch,method,properties)
time.sleep(15) # 模拟处理时间
print("Received %r"%body)
ch.basic_ack(delivery_tag=method.delivery_tag) channel.basic_qos(prefetch_count=1)
channel.basic_consume(callback, #如果收到消息,就调用callback函数处理消息
queue="lzl",
)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming() #开始收消息
consume.py
6、Publish\Subscribe(消息发布\订阅)
之前的例子都基本都是1对1的消息发送和接收,即消息只能发送到指定的queue里,但有些时候你想让你的消息被所有的Queue收到,类似广播的效果,这时候就要用到exchange了,
An exchange is a very simple thing. On one side it receives messages from producers and the other side it pushes them to queues. The exchange must know exactly what to do with a message it receives. Should it be appended to a particular queue? Should it be appended to many queues? Or should it get discarded. The rules for that are defined by the exchange type.
Exchange在定义的时候是有类型的,以决定到底是哪些Queue符合条件,可以接收消息
fanout: 所有bind到此exchange的queue都可以接收消息
direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息
topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息
headers: 通过headers 来决定把消息发给哪些queue
表达式符号说明:#代表一个或多个字符,*代表任何字符
例:#.a会匹配a.a,aa.a,aaa.a等
*.a会匹配a.a,b.a,c.a等
注:使用RoutingKey为#,Exchange Type为topic的时候相当于使用fanout
① fanout接收所有广播:广播表示当前消息是实时的,如果没有一个消费者在接受消息,消息就会丢弃,在这里消费者的no_ack已经无用,因为fanout不会管你处理消息结束没有,发过的消息不会重发,记住广播是实时的
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='logs',
type='fanout') message = "info: Hello World!"
channel.basic_publish(exchange='logs',
routing_key='', #广播不用声明queue
body=message)
print(" [x] Sent %r" % message)
connection.close()
publish.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='logs',
type='fanout') result = channel.queue_declare(exclusive=True) # 不指定queue名字,rabbit会随机分配一个名字,
# exclusive=True会在使用此queue的消费者断开后,自动将queue删除
queue_name = result.method.queue channel.queue_bind(exchange='logs', # 绑定转发器,收转发器上面的数据
queue=queue_name) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r" % body) channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
consume.py
② 有选择的接收消息 direct: 同fanout一样,指定exchange及routingkey;消费端声明queue断开后不自动销毁,no_ack设置为Flase ,消息不会丢失,再次连接消息重新消费
RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列
import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
type='direct') severity = sys.argv[1] if len(sys.argv) > 1 else 'info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='direct_logs',
routing_key=severity,
body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()
publish.py
import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
type='direct') result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue severities = sys.argv[1:]
if not severities:
sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
sys.exit(1) for severity in severities:
channel.queue_bind(exchange='direct_logs',
queue=queue_name,
routing_key=severity) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
consume.py
③ 更细致的消息过滤 topic:
Although using the direct exchange improved our system, it still has limitations - it can't do routing based on multiple criteria.
In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...).
That would give us a lot of flexibility - we may want to listen to just critical errors coming from 'cron' but also all logs from 'kern'
import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='topic_logs',
type='topic') routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='topic_logs',
routing_key=routing_key,
body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()
publish.py
import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='topic_logs',
type='topic') result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue binding_keys = sys.argv[1:]
if not binding_keys:
sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
sys.exit(1) for binding_key in binding_keys:
channel.queue_bind(exchange='topic_logs',
queue=queue_name,
routing_key=binding_key) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
consume.py
RPC(Remote procedure call )双向通信
To illustrate how an RPC service could be used we're going to create a simple client class. It's going to expose a method named call which sends an RPC request and blocks until the answer is received:
rpc client:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian import pika
import uuid,time class FibonacciRpcClient(object):
def __init__(self):
self.connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost')) self.channel = self.connection.channel() result = self.channel.queue_declare(exclusive=True)
self.callback_queue = result.method.queue self.channel.basic_consume(self.on_response, #只要收到消息就执行on_response
no_ack=True, #不用ack确认
queue=self.callback_queue) def on_response(self, ch, method, props, body):
if self.corr_id == props.correlation_id: #验证码核对
self.response = body def call(self, n):
self.response = None
self.corr_id = str(uuid.uuid4())
print(self.corr_id)
self.channel.basic_publish(exchange='',
routing_key='rpc_queue',
properties=pika.BasicProperties(
reply_to=self.callback_queue, #发送返回信息的队列name
correlation_id=self.corr_id, #发送uuid 相当于验证码
),
body=str(n))
while self.response is None:
self.connection.process_data_events() #非阻塞版的start_consuming
print("no messages")
time.sleep(0.5) #测试
return int(self.response) fibonacci_rpc = FibonacciRpcClient() #实例化
print(" [x] Requesting fib(30)")
response = fibonacci_rpc.call(30) #执行call方法
print(" [.] Got %r" % response)
rpc server:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#-Author-Lian
import pika
import time connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost')) channel = connection.channel() channel.queue_declare(queue='rpc_queue') def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n - 1) + fib(n - 2) def on_request(ch, method, props, body):
n = int(body) print(" [.] fib(%s)" % n)
response = fib(n) ch.basic_publish(exchange='',
routing_key=props.reply_to, #回信息队列名
properties=pika.BasicProperties(correlation_id=
props.correlation_id),
body=str(response))
ch.basic_ack(delivery_tag=method.delivery_tag) #channel.basic_qos(prefetch_count=1)
channel.basic_consume(on_request,
queue='rpc_queue') print(" [x] Awaiting RPC requests")
channel.start_consuming()
Python开发【十一章】:RabbitMQ队列的更多相关文章
- 路飞学城-Python开发-第一章
# 基础需求: # 让用户输入用户名密码 # 认证成功后显示欢迎信息 # 输错三次后退出程序 username = 'pandaboy' password = ' def Login(username ...
- Python第十一章-常用的核心模块01-collections模块
python 自称 "Batteries included"(自带电池, 自备干粮?), 就是因为他提供了很多内置的模块, 使用这些模块无需安装和配置即可使用. 本章主要介绍 py ...
- Python第十一章-常用的核心模块03-json模块
python 自称 "Batteries included"(自带电池, 自备干粮?), 就是因为他提供了很多内置的模块, 使用这些模块无需安装和配置即可使用. 本章主要介绍 py ...
- Python第十一章-常用的核心模块04-datetime模块
python 自称 "Batteries included"(自带电池, 自备干粮?), 就是因为他提供了很多内置的模块, 使用这些模块无需安装和配置即可使用. 本章主要介绍 py ...
- 流畅的python第十一章接口学习记录
鸭子协议(忽略对象真正类型,转而关注对象有没有实现所需的方法,签名和语义) 标准库中的抽象基类 collections.abc模块中的抽象基类 抽象方法是抽象基类中用来强制子类必须实现的方法,如果子类 ...
- 路飞学城-Python开发-第二章
''' 数据结构: menu = { '北京':{ '海淀':{ '五道口':{ 'soho':{}, '网易':{}, 'google':{} }, '中关村':{ '爱奇艺':{}, '汽车之家' ...
- python开发笔记-连接rabbitmq异常问题unacked处理
待补充 思路:捕获程序处理异常,异常情况下,也给队列生产者返回“确认”消息
- 进击的Python【第十一章】:消息队列介绍、RabbitMQ&Redis的重点介绍与简单应用
消息队列介绍.RabbitMQ.Redis 一.什么是消息队列 这个概念我们百度Google能查到一大堆文章,所以我就通俗的讲下消息队列的基本思路. 还记得原来写过Queue的文章,不管是线程queu ...
- 第二百九十二节,RabbitMQ多设备消息队列-Python开发
RabbitMQ多设备消息队列-Python开发 首先安装Python开发连接RabbitMQ的API,pika模块 pika模块为第三方模块 对于RabbitMQ来说,生产和消费不再针对内存里的一 ...
随机推荐
- CentOS7—HAProxy安装与配置
概述 Haproxy下载地址:http://pkgs.fedoraproject.org/repo/pkgs/haproxy/ 关闭SElinux.配置防火墙 1.vi /etc/selinux/co ...
- 11g新特性-查询缓存(1)
众所周知,访问内存比访问硬盘快得多,除非硬盘体系发生革命性的改变.可以说缓存在Oracle里面无处不在,结果集缓存(Result Cache)是Oracle Database 11g新引入的功能,引入 ...
- 用C#通过正则表达式截取字符串中符合条件的子字符串
仅仅作为简单的记录,不多说直接上代码(仅测试使用): private void Test() { Regex ConnoteA = new Regex("^[a-zA-Z]\\d{8}$&q ...
- 关于HTML5的拖拽
不介绍具体情况,先看API,注意看后面括号的说明 dragstart:拖拽开始(应用于被拖拽对象) drag:拖拽中(应用于被拖拽对象) dragenter:拖拽到指定位置(应用于拖拽目标) drag ...
- 【Oracle】oracle中rownum的说明及使用技巧
oracle中常用到ROWNUM,所以做一些本人对rownum的一些认识和使用技巧的记录,以便备查. 一.rownum的说明 rownum是oracle特有的一个关键字. (1)对于基表,在inser ...
- SOAPUI使用教程-WSDL项目---检查器
SoapUI Pro添加了许多可用的WSDL消息上下文的检查器. XSD / XML Schema检查器 XML Schema检查器显示当前节点对应的XML模式定义. 下面的屏幕截图显示了在Bing搜 ...
- 黑科技装点圣诞节,美国邮政局用AR APP邮寄圣诞包裹
AR手游<精灵宝可梦Go>的出现将增强现实技术带到了众人的视线中,各大公司纷纷紧抓AR的发展前景,同时积极将AR功能引入自家产品中.临近圣诞,又到了一年一度的快递高峰期,据591ARVR资 ...
- 【NOI2016】优秀的拆分 题解(95分)
题目大意: 求一个字符串中形如AABB的子串个数. 思路: 用哈希做到O(1)判断字符串是否相同,O($n^2$)预处理,ans[i]为开头位置为i的形如AA的子串个数.再用O($n^2$)枚举出AA ...
- Leetcode Trapping Rain Water
Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...
- List集合特有的迭代器 ListIterator