我们知道,求一段序列的最大子段和是O(n)的,但是这样是显然会超时的。

我们需要一个数据结构来支持修改和计算的操作,对于这种修改一个而查询区间的问题,考虑使用线段树。

在线段树中,除了左端点,右端点,左儿子指针,右儿子指针之外,新开4个域——max,maxl,maxr,sum,其中sum为该区间的和,max为该区间上的最大子段和,maxl为必须包含左端点的最大子段和,maxr为必须包含右端点的最大子段和。

然后就……可以用线段树来统计了,注意求得的最大子段和中至少包含1个元素,所以出现了样例那样的输出负值。

修改时:

1、若左儿子的maxr和右儿子的maxl都为负,就从中取较大的为该节点的max(防止一个都不取),反之取二者中正的(都正就都取)。

2、将该节点的max用左右儿子的max更新。

3、该节点的maxl为左儿子的maxl与左儿子sum和右儿子maxl和的最大值。

4、该节点的maxr为右儿子的maxr与右儿子sum和左儿子maxr和的最大值。

5、该节点的sum为左右儿子的sum和。

查询时:

1、如果查询区间覆盖这一节点,将该节点信息返回。

2、如果只与一个儿子有交集,就返回在那个儿子中查找到的信息。

3、如果与两个儿子都有交集,就先分别计算出两个儿子的信息,然后按修改的方式将两个信息合并,然后返回。

4、最后返回的max值即为答案。

——http://www.cnblogs.com/whitecloth/archive/2012/03/22/2410925.html

#include<cstdio>
#include<algorithm>
using namespace std;
#define N 500001
struct Node{int maxv,maxl,maxr,sumv;}T[N<<2];
inline void pushup(Node &rt,const Node &ls,const Node &rs)
{
if(ls.maxr<0 && rs.maxl<0)
rt.maxv=max(ls.maxr,rs.maxl);
else
{
rt.maxv=0;
if(ls.maxr>0)
rt.maxv+=ls.maxr;
if(rs.maxl>0)
rt.maxv+=rs.maxl;
}
rt.maxv=max(rt.maxv,ls.maxv);
rt.maxv=max(rt.maxv,rs.maxv);
rt.maxl=max(ls.maxl,ls.sumv+rs.maxl);
rt.maxr=max(rs.maxr,rs.sumv+ls.maxr);
rt.sumv=ls.sumv+rs.sumv;
}
void buildtree(int rt,int l,int r)
{
if(l==r)
{
scanf("%d",&T[rt].maxv);
T[rt].sumv=T[rt].maxl=T[rt].maxr=T[rt].maxv;
return;
}
int m=(l+r>>1);
buildtree(rt<<1,l,m);
buildtree(rt<<1|1,m+1,r);
pushup(T[rt],T[rt<<1],T[rt<<1|1]);
}
void update(int p,int v,int rt,int l,int r)
{
if(l==r)
{
T[rt].sumv=T[rt].maxl=T[rt].maxr=T[rt].maxv=v;
return;
}
int m=(l+r>>1);
if(p<=m) update(p,v,rt<<1,l,m);
else update(p,v,rt<<1|1,m+1,r);
pushup(T[rt],T[rt<<1],T[rt<<1|1]);
}
Node query(int ql,int qr,int rt,int l,int r)
{
if(ql<=l&&r<=qr) return T[rt];
int m=(l+r>>1);
if(ql<=m && m<qr)
{
Node res;
pushup(res,query(ql,qr,rt<<1,l,m),query(ql,qr,rt<<1|1,m+1,r));
return res;
}
else if(ql<=m) return query(ql,qr,rt<<1,l,m);
else return query(ql,qr,rt<<1|1,m+1,r);
}
int n,m;
int main()
{
int op,x,y;
scanf("%d%d",&n,&m);
buildtree(1,1,n);
for(;m;--m)
{
scanf("%d%d%d",&op,&x,&y);
if(op==1)
{
if(x>y)
swap(x,y);
printf("%d\n",query(x,y,1,1,n).maxv);
}
else update(x,y,1,1,n);
}
return 0;
}

【线段树】bzoj1756 Vijos1083 小白逛公园的更多相关文章

  1. 线段树 || BZOJ1756: Vijos1083 小白逛公园 || P4513 小白逛公园

    题面:小白逛公园 题解: 对于线段树的每个节点除了普通线段树该维护的东西以外,额外维护lsum(与左端点相连的最大连续区间和).rsum(同理)和sum……就行了 代码: #include<cs ...

  2. bzoj1756 Vijos1083 小白逛公园

    Description 小新经常陪小白去公园玩,也就是所谓的遛狗啦-在小新家附近有一条"公园路",路的一边从南到北依次排着n个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩了. ...

  3. Bzoj 1756: Vijos1083 小白逛公园 线段树

    1756: Vijos1083 小白逛公园 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1021  Solved: 326[Submit][Statu ...

  4. BZOJ 1756: Vijos1083 小白逛公园

    题目 1756: Vijos1083 小白逛公园 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 856  Solved: 264[Submit][Sta ...

  5. 【Vijos1083/BZOJ1756】小白逛公园(线段树)

    [写在前面]TYC (Little White) 真是太巨啦! 题目: Vijos1083 分析: 一眼看上去就是线段树啊-- 然而当我这种蒟蒻兴高采烈地把线段树模板敲了一半,却发现一个问题: 这子区 ...

  6. 【BZOJ】1756: Vijos1083 小白逛公园(线段树)

    题目 传送门:QWQ 分析 线段树维护一下最大子序列 维护一下最大前缀 最大后缀  区间和 就ok了 好像只能用结构体..... 代码 #include <bits/stdc++.h> u ...

  7. [日常摸鱼]Vijos1083小白逛公园-线段树

    题意:单点修改,询问区间最大子段和,$n\leq 5e5$ 考虑分治的方法$O(nlogn)$求一次最大子段和的做法,我们是根据中点分成左右两个区间,那么整个区间的答案要么是左边答案,要么是右边答案, ...

  8. 洛谷 P4513 小白逛公园-区间最大子段和-分治+线段树区间合并(单点更新、区间查询)

    P4513 小白逛公园 题目背景 小新经常陪小白去公园玩,也就是所谓的遛狗啦… 题目描述 在小新家附近有一条“公园路”,路的一边从南到北依次排着nn个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩 ...

  9. vijos1083:小白逛公园

    小白逛公园 描述 小新经常陪小白去公园玩,也就是所谓的遛狗啦…在小新家附近有一条“公园路”,路的一边从南到北依次排着n个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩了. 一开始,小白就根据公园的 ...

随机推荐

  1. 水果姐逛水果街Ⅱ codevs 3305

    3305 水果姐逛水果街Ⅱ  时间限制: 2 s  空间限制: 256000 KB   题目描述 Description 水果姐第二天心情也很不错,又来逛水果街. 突然,cgh又出现了.cgh施展了魔 ...

  2. windows下用navicat远程链接虚拟机Linux下MySQL数据库

    今天想用navicat远程连接虚拟机中的MySQL数据库,一直连不上,在网上搜索了一下,发现原因是MySQL对远程用户登陆的授权问题.这里说一下我的解决方法.(本人小白) 首先,我用navicat去远 ...

  3. CSS overflow 属性

     值 描述 visible 默认值.内容不会被修剪,会呈现在元素框之外. hidden 内容会被修剪,并且其余内容是不可见的. scroll 内容会被修剪,但是浏览器会显示滚动条以便查看其余的内容. ...

  4. hdu5442 Favorite Donut

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5442 题目大意:给你一个长度为n的字符串,将它首尾相连成环.问你这个环上找一个长度为n的字典序最大的串 ...

  5. linux命令(4):mkdir命令

    linux mkdir 命令 用来创建指定的名称的目录,要求创建目录的用户在当前目录中具有写权限,并且指定的目录名不能是当前目录中已有的目录. 1.命令格式: mkdir [选项] 目录... 2.命 ...

  6. 更新CocoaPods

    终端输入 : sudo gem install -n /usr/local/bin cocoapods –pre 更新了CocoaPods后,在原来的工程中执行了pod install命令后,报这样的 ...

  7. css之absolute绝对定位(绝对定位特性)

    学习了绝对定位以后,对此进行一个总结,啦啦啦啦~ 绝对定位特性 1.破坏性 破坏了原有的位置,从文档流里脱离出来 2.包裹性 如果下面这种情况,父级元素将不会有高度和宽度,失去原有的大小

  8. Git 在团队中的最佳实践--如何正确使用Git Flow[转]

    原文地址:http://www.cnblogs.com/cnblogsfans/p/5075073.html Git的优点 Git的优点很多,但是这里只列出我认为非常突出的几点. 由于是分布式,所有本 ...

  9. CR LF的由来

    学习Esperanto时用到一款叫做Kajero的软件,支持世界语特殊字符编辑. 在Option菜单中有个选项,End of line 列出了四种换行方式 这四种都是由基本CR和LF组成.那么CR和L ...

  10. 对于cookie和session的形象解释

    生活中的场景: 一群人,买豆浆,也不排队,乱哄哄的 豆浆现磨. 先交钱,交完钱蹲在一边等. 这个老板非常健忘! 记忆时间:转脸就忘. 李四给老板钱<--->"大杯黄豆!" ...