根据需求,转化为不同的颜色格式,split后处理各自通道。

plImage <==> Mat 格式转换

Mat --> plImage 简单写法:

IplImage copy = mat_img;
IplImage* new_image = copy;
cvWriteFrame( wrVideo1, new_image );

#include <stdio.h>
#include <iostream>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/core/utility.hpp> using namespace cv; // all the new API is put into "cv" namespace. Export its content
using namespace std; static void help()
{
cout <<
"\nThis program shows how to use cv::Mat and IplImages converting back and forth.\n"
"It shows reading of images, converting to planes and merging back, color conversion\n"
"and also iterating through pixels.\n"
"Call:\n"
"./image [image-name Default: ../data/lena.jpg]\n" << endl;
} // enable/disable use of mixed API in the code below.
#define DEMO_MIXED_API_USE 1 #ifdef DEMO_MIXED_API_USE
# include <opencv2/highgui/highgui_c.h>
# include <opencv2/imgcodecs/imgcodecs_c.h>
#endif int main( int argc, char** argv )
{
cv::CommandLineParser parser(argc, argv, "{help h | |}{@image|../data/lena.jpg|}");
if (parser.has("help"))
{
help();
return 0;
}
string imagename = parser.get<string>("@image"); /*
* Jeff: How to transform between them.
* plImage <==> Mat
*/ #if DEMO_MIXED_API_USE
//! [iplimage]
Ptr<IplImage> iplimg(cvLoadImage(imagename.c_str())); // Ptr<T> is safe ref-counting pointer class
if(!iplimg)
{
fprintf(stderr, "Can not load image %s\n", imagename.c_str());
return -1;
}
Mat img = cv::cvarrToMat(iplimg); // cv::Mat replaces the CvMat and IplImage, but it's easy to convert
// between the old and the new data structures (by default, only the header
// is converted, while the data is shared)
//! [iplimage]
#else
Mat img = imread(imagename); // the newer cvLoadImage alternative, MATLAB-style function
if(img.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename.c_str());
return -1;
}
#endif if( img.empty() ) // check if the image has been loaded properly
return -1; Mat img_yuv;
cvtColor(img, img_yuv, COLOR_BGR2YCrCb); // convert image to YUV color space. The output image will be created automatically vector<Mat> planes; // Vector is template vector class, similar to STL's vector. It can store matrices too.
split(img_yuv, planes); // split the image into separate color planes #if 1
/*
* Jeff: MatIterator_< >
* Mat 单元处理
*/ // method 1. process Y plane using an iterator
MatIterator_<uchar> it = planes[0].begin<uchar>(), it_end = planes[0].end<uchar>();
for(; it != it_end; ++it)
{
double v = *it*1.7 + rand()%21-10;
// 考虑:为什么上面的函数会用到saturate_cast呢?
// 因为无论是加是减,乘除,都会超出一个像素灰度值的范围(0~255)
// 所以,所以当运算完之后,结果为负,则转为0,结果超出255,则为255。
*it = saturate_cast<uchar>(v*v/255.);
} // method 2. process the first chroma plane using pre-stored row pointer.
// method 3. process the second chroma plane using individual element access
for( int y = 0; y < img_yuv.rows; y++ )
{
uchar* Uptr = planes[1].ptr<uchar>(y);
for( int x = 0; x < img_yuv.cols; x++ )
{
Uptr[x] = saturate_cast<uchar>((Uptr[x]-128)/2 + 128);
uchar& Vxy = planes[2].at<uchar>(y, x);
Vxy = saturate_cast<uchar>((Vxy-128)/2 + 128);
}
} #else
Mat noise(img.size(), CV_8U); // another Mat constructor; allocates a matrix of the specified size and type
randn(noise, Scalar::all(128), Scalar::all(20)); // fills the matrix with normally distributed random values;
// there is also randu() for uniformly distributed random number generation
GaussianBlur(noise, noise, Size(3, 3), 0.5, 0.5); // blur the noise a bit, kernel size is 3x3 and both sigma's are set to 0.5 const double brightness_gain = 0;
const double contrast_gain = 1.7;
#if DEMO_MIXED_API_USE
// it's easy to pass the new matrices to the functions that only work with IplImage or CvMat:
// step 1) - convert the headers, data will not be copied
IplImage cv_planes_0 = planes[0], cv_noise = noise;
// step 2) call the function; do not forget unary "&" to form pointers
cvAddWeighted(&cv_planes_0, contrast_gain, &cv_noise, 1, -128 + brightness_gain, &cv_planes_0);
#else
addWeighted(planes[0], contrast_gain, noise, 1, -128 + brightness_gain, planes[0]);
#endif
const double color_scale = 0.5;
// Mat::convertTo() replaces cvConvertScale. One must explicitly specify the output matrix type (we keep it intact - planes[1].type())
planes[1].convertTo(planes[1], planes[1].type(), color_scale, 128*(1-color_scale));
// alternative form of cv::convertScale if we know the datatype at compile time ("uchar" here).
// This expression will not create any temporary arrays and should be almost as fast as the above variant
planes[2] = Mat_<uchar>(planes[2]*color_scale + 128*(1-color_scale)); // Mat::mul replaces cvMul(). Again, no temporary arrays are created in case of simple expressions.
planes[0] = planes[0].mul(planes[0], 1./255);
#endif /*
* Jeff --> split, merge
*/
// now merge the results back
merge(planes, img_yuv);
// and produce the output RGB image
cvtColor(img_yuv, img, COLOR_YCrCb2BGR); // this is counterpart for cvNamedWindow
namedWindow("image with grain", WINDOW_AUTOSIZE);
#if DEMO_MIXED_API_USE
// this is to demonstrate that img and iplimg really share the data - the result of the above
// processing is stored in img and thus in iplimg too.
cvShowImage("image with grain", iplimg);
#else
imshow("image with grain", img);
#endif
waitKey(); return 0;
// all the memory will automatically be released by Vector<>, Mat and Ptr<> destructors.
}

[OpenCV] Samples 09: image的更多相关文章

  1. [OpenCV] Samples 09: plImage <==> Mat

    根据需求,转化为不同的颜色格式,split后处理各自通道. plImage <==> Mat 格式转换 Mat --> plImage 简单写法: IplImage copy = m ...

  2. [OpenCV] Samples 10: imagelist_creator

    yaml写法的简单例子.将 $ ./ 1 2 3 4 5 命令的参数(代表图片地址)写入yaml中. 写yaml文件. 参考:[OpenCV] Samples 06: [ML] logistic re ...

  3. [OpenCV] Samples 16: Decompose and Analyse RGB channels

    物体的颜色特征决定了灰度处理不是万能,对RGB分别处理具有相当的意义. #include <iostream> #include <stdio.h> #include &quo ...

  4. [OpenCV] Samples 06: [ML] logistic regression

    logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...

  5. [OpenCV] Samples 06: logistic regression

    logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...

  6. [OpenCV] Samples 13: opencv_version

    cv::CommandLineParser的使用. I suppose CommandLineParser::has("something") should be true whe ...

  7. [OpenCV] Samples 12: laplace

    先模糊再laplace,也可以替换为sobel等. 变换效果后录成视频,挺好玩. #include "opencv2/videoio/videoio.hpp" #include & ...

  8. [OpenCV] Samples 05: convexhull

    得到了复杂轮廓往往不适合特征的检测,这里再介绍一个点集凸包络的提取函数convexHull,输入参数就可以是contours组中的一个轮廓,返回外凸包络的点集 ---- 如此就能去掉凹进去的边. 对于 ...

  9. [OpenCV] Samples 03: cout_mat

    操作Mat元素时:I.at<double>(1,1) = CV_PI; /* * * cvout_sample just demonstrates the serial out capab ...

随机推荐

  1. 第一次自己写jquery图片延迟加载插件,不通用,但修改一下还是可以使用到很多页面上的

    不断修改完善中…… /*! * jquery.lazyoading.js *自定义的页面图片延迟加载插件,比网上的jquery.lazyload简单,也更适合自己的网站 *使用方法: 把img 的cl ...

  2. yuecheng 笑话

    http://115.28.189.219:9898/stock/manager_articles/fundamentals 要闻 http://115.28.189.219:9898/stock/m ...

  3. [翻译]Spring框架参考文档(V4.3.3)-第二章Spring框架介绍 2.1 2.2 翻译--2.3待继续

    英文链接:http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/overview.ht ...

  4. Bullet物理引擎在OpenGL中的应用

    Bullet物理引擎在OpenGL中的应用 在开发OpenGL的应用之时, 难免要遇到使用物理来模拟OpenGL中的场景内容. 由于OpenGL仅仅是一个关于图形的开发接口, 因此需要通过第三方库来实 ...

  5. CMD命令小结

    C:\Windows\Explorer.exe “文件具体目录(要加文件后缀名)”,(Explorer.exe后有一个空格,例如C:\Windows\Explorer.exe C:\temp\New ...

  6. Redhat Linux /etc/profile 与 /etc/bashrc 的区别

    最近学习RHCE,在umask这里,书里说要修改/etc/profile和/etc/bashrc两个文件,却没有说明这两个区别.于是在上网查看之后倒是明白了各是怎么用的./etc/profile是对应 ...

  7. 我的ORM之九 -- 生成器

    我的ORM索引 数据库连接字符串格式 <add name="dbo" connectionString="" providerName="MyS ...

  8. Java设计模式7:适配器模式

    适配器模式 适配器模式说的是,可以把一个类的接口变换成客户端所期待的另一种接口,使得原本因接口不匹配而无法在一起工作的两个类可以一起工作. 适配器模式的用途 适配器模式的用途,在网上找了一幅图,挺形象 ...

  9. FastUI快速界面原型制作工具

    FastUI是一款快速制作应用程序界面原型的小工具,它之所以快,是因为它体积小巧.功能简洁实用. 在真正的应用程序(包括winform.手机app.网站等)开始编码之前,一般要先设计出原型,以便确认需 ...

  10. js模版引擎handlebars.js实用教程——each-循环中使用this

    返回目录 <!DOCTYPE html> <html> <head> <META http-equiv=Content-Type content=" ...