本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理

今天给大家分享一下关于装饰器的知识点,内容非常干,全程高能,认真吸收看完,一定会对装饰器有更深的理解。

Hello,装饰器

装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。

它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。

装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。

装饰器的使用方法很固定

  • 先定义一个装饰器(帽子)
  • 再定义你的业务函数或者类(人)
  • 最后把这装饰器(帽子)扣在这个函数(人)头上

就像下面这样子

# 定义装饰器
def decorator(func):
def wrapper(*args, **kw):
return func()
return wrapper # 定义业务函数并进行装饰
@decorator
def function():
print("hello, decorator")
复制代码

实际上,装饰器并不是编码必须性,意思就是说,你不使用装饰器完全可以,它的出现,应该是使我们的代码

  • 更加优雅,代码结构更加清晰
  • 将实现特定的功能代码封装成装饰器,提高代码复用率,增强代码可读性

接下来,我将以实例讲解,如何编写出各种简单及复杂的装饰器。

第一种:普通装饰器

首先咱来写一个最普通的装饰器,它实现的功能是:

  • 在函数执行前,先记录一行日志
  • 在函数执行完,再记录一行日志
# 这是装饰器函数,参数 func 是被装饰的函数
def logger(func):
def wrapper(*args, **kw):
print('我准备开始执行:{} 函数了:'.format(func.__name__)) # 真正执行的是这行。
func(*args, **kw) print('主人,我执行完啦。')
return wrapper
复制代码

假如,我的业务函数是,计算两个数之和。写好后,直接给它带上帽子。

@logger
def add(x, y):
print('{} + {} = {}'.format(x, y, x+y))
复制代码

然后执行一下 add 函数。

add(200, 50)
复制代码

来看看输出了什么?

我准备开始执行:add 函数了:
200 + 50 = 250
我执行完啦。
复制代码

第二种:带参数的函数装饰器

通过上面两个简单的入门示例,你应该能体会到装饰器的工作原理了。

不过,装饰器的用法还远不止如此,深究下去,还大有文章。今天就一起来把这个知识点学透。

回过头去看看上面的例子,装饰器是不能接收参数的。其用法,只能适用于一些简单的场景。不传参的装饰器,只能对被装饰函数,执行固定逻辑。

装饰器本身是一个函数,做为一个函数,如果不能传参,那这个函数的功能就会很受限,只能执行固定的逻辑。这意味着,如果装饰器的逻辑代码的执行需要根据不同场景进行调整,若不能传参的话,我们就要写两个装饰器,这显然是不合理的。

比如我们要实现一个可以定时发送邮件的任务(一分钟发送一封),定时进行时间同步的任务(一天同步一次),就可以自己实现一个 periodic_task (定时任务)的装饰器,这个装饰器可以接收一个时间间隔的参数,间隔多长时间执行一次任务。

可以这样像下面这样写,由于这个功能代码比较复杂,不利于学习,这里就不贴了。

@periodic_task(spacing=60)
def send_mail():
pass @periodic_task(spacing=86400)
def ntp()
pass
复制代码

那我们来自己创造一个伪场景,可以在装饰器里传入一个参数,指明国籍,并在函数执行前,用自己国家的母语打一个招呼。

# 小明,中国人
@say_hello("china")
def xiaoming():
pass # jack,美国人
@say_hello("america")
def jack():
pass
复制代码

那我们如果实现这个装饰器,让其可以实现 传参 呢?

会比较复杂,需要两层嵌套。

def say_hello(contry):
def wrapper(func):
def deco(*args, **kwargs):
if contry == "china":
print("你好!")
elif contry == "america":
print('hello.')
else:
return # 真正执行函数的地方
func(*args, **kwargs)
return deco
return wrapper
复制代码

来执行一下

xiaoming()
print("------------")
jack()
复制代码

看看输出结果。

你好!
------------
hello.
复制代码

第三种:不带参数的类装饰器

以上都是基于函数实现的装饰器,在阅读别人代码时,还可以时常发现还有基于类实现的装饰器。

基于类装饰器的实现,必须实现 __call____init__两个内置函数。 __init__ :接收被装饰函数 __call__ :实现装饰逻辑。

还是以日志打印这个简单的例子为例

class logger(object):
def __init__(self, func):
self.func = func def __call__(self, *args, **kwargs):
print("[INFO]: the function {func}() is running..."\
.format(func=self.func.__name__))
return self.func(*args, **kwargs) @logger
def say(something):
print("say {}!".format(something)) say("hello")
复制代码

执行一下,看看输出

[INFO]: the function say() is running...
say hello!
复制代码

第四种:带参数的类装饰器

上面不带参数的例子,你发现没有,只能打印INFO级别的日志,正常情况下,我们还需要打印DEBUG WARNING等级别的日志。 这就需要给类装饰器传入参数,给这个函数指定级别了。

带参数和不带参数的类装饰器有很大的不同。

__init__ :不再接收被装饰函数,而是接收传入参数。 __call__ :接收被装饰函数,实现装饰逻辑。

class logger(object):
def __init__(self, level='INFO'):
self.level = level def __call__(self, func): # 接受函数
def wrapper(*args, **kwargs):
print("[{level}]: the function {func}() is running..."\
.format(level=self.level, func=func.__name__))
func(*args, **kwargs)
return wrapper #返回函数 @logger(level='WARNING')
def say(something):
print("say {}!".format(something)) say("hello")
复制代码

我们指定WARNING级别,运行一下,来看看输出。

[WARNING]: the function say() is running...
say hello!
复制代码

第五种:使用偏函数与类实现装饰器

绝大多数装饰器都是基于函数和闭包实现的,但这并非制造装饰器的唯一方式。

事实上,Python 对某个对象是否能通过装饰器( @decorator)形式使用只有一个要求:decorator 必须是一个“可被调用(callable)的对象

对于这个 callable 对象,我们最熟悉的就是函数了。

除函数之外,类也可以是 callable 对象,只要实现了__call__ 函数(上面几个例子已经接触过了)。

还有容易被人忽略的偏函数其实也是 callable 对象。

接下来就来说说,如何使用 类和偏函数结合实现一个与众不同的装饰器。

如下所示,DelayFunc 是一个实现了 __call__ 的类,delay 返回一个偏函数,在这里 delay 就可以做为一个装饰器。(以下代码摘自 Python工匠:使用装饰器的小技巧)

import time
import functools class DelayFunc:
def __init__(self, duration, func):
self.duration = duration
self.func = func def __call__(self, *args, **kwargs):
print(f'Wait for {self.duration} seconds...')
time.sleep(self.duration)
return self.func(*args, **kwargs) def eager_call(self, *args, **kwargs):
print('Call without delay')
return self.func(*args, **kwargs) def delay(duration):
"""
装饰器:推迟某个函数的执行。
同时提供 .eager_call 方法立即执行
"""
# 此处为了避免定义额外函数,
# 直接使用 functools.partial 帮助构造 DelayFunc 实例
return functools.partial(DelayFunc, duration)
复制代码

我们的业务函数很简单,就是相加

@delay(duration=2)
def add(a, b):
return a+b
复制代码

来看一下执行过程

>>> add    # 可见 add 变成了 Delay 的实例
<__main__.DelayFunc object at 0x107bd0be0>
>>>
>>> add(3,5) # 直接调用实例,进入 __call__
Wait for 2 seconds...
8
>>>
>>> add.func # 实现实例方法
<function add at 0x107bef1e0>
复制代码

第六种:能装饰类的装饰器

用 Python 写单例模式的时候,常用的有三种写法。其中一种,是用装饰器来实现的。

以下便是我自己写的装饰器版的单例写法。

instances = {}

def singleton(cls):
def get_instance(*args, **kw):
cls_name = cls.__name__
print('===== 1 ====')
if not cls_name in instances:
print('===== 2 ====')
instance = cls(*args, **kw)
instances[cls_name] = instance
return instances[cls_name]
return get_instance @singleton
class User:
_instance = None def __init__(self, name):
print('===== 3 ====')
self.name = name
复制代码

可以看到我们用singleton 这个装饰函数来装饰 User 这个类。装饰器用在类上,并不是很常见,但只要熟悉装饰器的实现过程,就不难以实现对类的装饰。在上面这个例子中,装饰器就只是实现对类实例的生成的控制而已。

其实例化的过程,你可以参考我这里的调试过程,加以理解。

以上就是我对装饰器的总结,内容非常多,通读一遍一定会对你理解装饰器有帮助~

想要获取更多Python学习资料可以加
QQ:2955637827私聊
或加Q群630390733
大家一起来学习讨论吧!

恶补了 Python 装饰器的六种写法,你随便问~的更多相关文章

  1. 关于python装饰器

    关于python装饰器,不是系统的介绍,只是说一下某些问题 1 首先了解变量作用于非常重要 2 其次要了解闭包 def logger(func): def inner(*args, **kwargs) ...

  2. python装饰器通俗易懂的解释!

    1.python装饰器 刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍Debug,查了多少遍资料,猜有点点开始明白了.总结了一下解释得比较好的,通俗易懂的来说 ...

  3. Python 装饰器学习

    Python装饰器学习(九步入门)   这是在Python学习小组上介绍的内容,现学现卖.多练习是好的学习方式. 第一步:最简单的函数,准备附加额外功能 1 2 3 4 5 6 7 8 # -*- c ...

  4. python 装饰器修改调整函数参数

    简单记录一下利用python装饰器来调整函数的方法.现在有个需求:参数line范围为1-16,要求把9-16的范围转化为1-8,即9对应1,10对应2,...,16对应8. 下面是例子: def fo ...

  5. python 装饰器学习(decorator)

    最近看到有个装饰器的例子,没看懂, #!/usr/bin/python class decorator(object): def __init__(self,f): print "initi ...

  6. Python装饰器详解

    python中的装饰器是一个用得非常多的东西,我们可以把一些特定的方法.通用的方法写成一个个装饰器,这就为调用这些方法提供一个非常大的便利,如此提高我们代码的可读性以及简洁性,以及可扩展性. 在学习p ...

  7. 关于python装饰器(Decorators)最底层理解的一句话

    一个decorator只是一个带有一个函数作为参数并返回一个替换函数的闭包. http://www.xxx.com/html/2016/pythonhexinbiancheng_0718/1044.h ...

  8. Python装饰器由浅入深

    装饰器的功能在很多语言中都有,名字也不尽相同,其实它体现的是一种设计模式,强调的是开放封闭原则,更多的用于后期功能升级而不是编写新的代码.装饰器不光能装饰函数,也能装饰其他的对象,比如类,但通常,我们 ...

  9. Python装饰器与面向切面编程

    今天来讨论一下装饰器.装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志.性能测试.事务处理等.装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数 ...

随机推荐

  1. 开源认证和访问控制的利器keycloak使用简介

    目录 简介 安装keycloak 创建admin用户 创建realm和普通用户 使用keycloak来保护你的应用程序 安装WildFly client adapter 注册WildFly应用程序 安 ...

  2. 【Vue】VUE源码中的一些工具函数

    Vue源码-工具方法 /* */ //Object.freeze()阻止修改现有属性的特性和值,并阻止添加新属性. var emptyObject = Object.freeze({}); // th ...

  3. redis 做分布式锁

    ok 我们从最基础的一步步来 加锁: 1.setNx没有expire,拿锁线程挂掉后,死锁 2.setNx然后exipre分两步做,setNx后redis宕机,或者线程挂掉,死锁 3.SETNX re ...

  4. python中字符串的编码和解码

    1. 常用的编码 ASCII:只能表示一些字母,数字和特殊的字符,占一个字节 GBK:国家简体中文字符集和繁体字符集,兼容ASCII,占两个字节 Unicode:能够表示全世界上所有的字符,Unico ...

  5. 深度学习(一):Python神经网络——手写数字识别

    声明:本文章为阅读书籍<Python神经网络编程>而来,代码与书中略有差异,书籍封面: 源码 若要本地运行,请更改源码中图片与数据集的位置,环境为 Python3.6x. 1 import ...

  6. 一周一个中间件-hbase

    前言 hbase是大数据的生态的一部分,是高可靠性.高性能.列存储.可伸缩.实时读写的数据库系统.介于nosql和RDBMS之间.主要存储非结构化和半结构化的松散数据. 海量数据存储 快速随机访问 大 ...

  7. LeetCode 035 Search Insert Position

    题目要求:Search Insert Position Given a sorted array and a target value, return the index if the target ...

  8. 010 editor的使用

    原文链接:http://www.cnblogs.com/vendanner/p/4939444.html 注意事项:之前一直在虚拟机winxp中添加template一直失败,原因可能是因为虚拟机的版本 ...

  9. PyQt(Python+Qt)学习随笔:QTableWidget的构造方法

    老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 QTableWidget有2个构造方法: QTableWidget(QWidget parent = ...

  10. 第11.9节 Python正则表达式的贪婪模式和非贪婪模式

    在使用正则表达式时,匹配算法存在贪婪模式和非贪婪模式两种模式,在<第11.8节 Pytho正则表达式的重复匹配模式及元字符"?". "*". " ...