Popular Cows
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 31241   Accepted: 12691

Description

Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is 
popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow. 

Input

* Line 1: Two space-separated integers, N and M

* Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.

Output

* Line 1: A single integer that is the number of cows who are considered popular by every other cow. 

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1

Hint

Cow 3 is the only cow of high popularity. 

Source


题意:

每头奶牛都梦想成为牛棚里的明星。被所有奶牛喜欢的奶牛就是一头明星奶牛。所有奶

牛都是自恋狂,每头奶牛总是喜欢自己的。奶牛之间的“喜欢”是可以传递的——如果A喜

欢B,B喜欢C,那么A也喜欢C。牛栏里共有N 头奶牛,给定一些奶牛之间的爱慕关系,请你

算出有多少头奶牛可以当明星。


第三道了

出度为0的scc只有一个答案就是它的size

否则无解

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=1e4+,M=5e4+;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,u,v;
struct edge{
int v,ne;
}e[M];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
}
int dfn[N],belong[N],low[N],dfc,scc,st[N],top;
int size[N];
void dfs(int u){
dfn[u]=low[u]=++dfc;
st[++top]=u;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!dfn[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}else if(!belong[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u]){
scc++;
while(true){
int x=st[top--];
belong[x]=scc;
size[scc]++;
if(x==u) break;
}
}
}
int outd[N],ind[N],ans;
void point(){
for(int u=;u<=n;u++)
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(belong[u]!=belong[v]) outd[belong[u]]++,ind[belong[v]]++;
}
}
int main(){
n=read();m=read();
for(int i=;i<=m;i++){u=read();v=read();ins(u,v);}
for(int i=;i<=n;i++) if(!dfn[i]) dfs(i);
point();
for(int i=;i<=scc;i++){
if(outd[i]==){
if(ans){ans=;break;}
else ans=size[i];
}
}
printf("%d",ans);
}

POJ2186 Popular Cows [强连通分量|缩点]的更多相关文章

  1. poj 2186 Popular Cows (强连通分量+缩点)

    http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissi ...

  2. POJ2186 Popular Cows 强连通分量tarjan

    做这题主要是为了学习一下tarjan的强连通分量,因为包括桥,双连通分量,强连通分量很多的求法其实都可以源于tarjan的这种方法,通过一个low,pre数组求出来. 题意:给你许多的A->B ...

  3. POJ 2186 Popular Cows(强连通分量缩点)

    题目链接:http://poj.org/problem?id=2186 题目意思大概是:给定N(N<=10000)个点和M(M<=50000)条有向边,求有多少个“受欢迎的点”.所谓的“受 ...

  4. POJ-2186 Popular Cows,tarjan缩点找出度为0的点。

    Popular Cows 题意:一只牛崇拜另外一只牛,这种崇拜关系可以传导.A->B,B->C =>A->C.现在给出所有的关系问你有多少牛被其他所有的牛都崇拜. 思路:就是一 ...

  5. poj2186 Popular Cows --- 强连通

    给一个有向图,问有多少结点是其它全部结点都能够到达的. 等价于,在一个有向无环图上,找出度为0 的结点.假设出度为0的结点仅仅有一个,那么这个就是答案.假设大于1个.则答案是0. 这题有环.所以先缩点 ...

  6. POJ 2186 Popular Cows --强连通分量

    题意:给定一个有向图,问有多少个点由任意顶点出发都能达到. 分析:首先,在一个有向无环图中,能被所有点达到点,出度一定是0. 先求出所有的强连通分支,然后把每个强连通分支收缩成一个点,重新建图,这样, ...

  7. POJ2186:Popular Cows(tarjan+缩点)

    题目解析: 这题题意没什么好说的,解法也挺简单的,只要会tarjan算法+只有一个出度为0的强连通分量题目有解这题就迎刃而解了. #include <iostream> #include ...

  8. POJ 2186 Popular Cows 强连通分量模板

    题意 强连通分量,找独立的块 强连通分量裸题 #include <cstdio> #include <cstdlib> #include <cstring> #in ...

  9. 强连通分量tarjan缩点——POJ2186 Popular Cows

    这里的Tarjan是基于DFS,用于求有向图的强联通分量. 运用了一个点dfn时间戳和low的关系巧妙地判断出一个强联通分量,从而实现一次DFS即可求出所有的强联通分量. §有向图中, u可达v不一定 ...

随机推荐

  1. 【笔记】Asp.Net WebApi对js POST带参数跨域请求的支持方案

    先说下需求:在原来的WebApi项目中增加对js跨域的请求支持,请求方式:以POST为主,webapi路由规则根据原项目需求修改如下: public static void Register(Http ...

  2. 疯狂Android讲义 - 学习笔记(八)

    第10章 Service与BroadcastReceiver 10.1 Service简介 Service组件也是可执行的程序,有自己的生命周期,创建.配置Service与创建.配置Activity的 ...

  3. hdu-2063-二分图最大匹配

    过山车 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. 关于tomcat文件下载配置

    前言 tomcat文件下载 关闭tomcat目录列表浏览功能 Tomcat 不能下载带中文文件名的附件的方法 在Java Web项目中文件下载是一个很常见的功能,最近在做项目中发现可以通过tomcat ...

  5. PHP7 redis扩展安装

    1.安装redis (1)下载:https://github.com/phpredis/phpredis/tree/php7 或下载http://pan.baidu.com/s/1i5DFrjn用sa ...

  6. CyclicBarrier ------仿真赛马游戏

    import java.util.ArrayList;import java.util.List;import java.util.Random;import java.util.concurrent ...

  7. SharePoint 2013 新建网站集图解

    前言:接触SharePoint的人可能是越来越多,但是很多人一接触就很迷茫,在技术群里问如何新建网站集,这样一篇图解,帮助新手学习在搭建好SharePoint环境之后,如何创建一个网站集,做一个基本的 ...

  8. 用Kotlin开发Android应用(IV):定制视图和Android扩展

    原文标题:Kotlin for Android (IV): Custom Views and Android Extensions 原文链接:http://antonioleiva.com/kotli ...

  9. iOS UIMenuController菜单

    //1:普通 ////  ViewController.m//  DemoTest#import "ViewController.h"@interface ViewControll ...

  10. log4j配置

    log4j.rootCategory=DEBUG , R, D,stdout # Console log4j.appender.stdout=org.apache.log4j.ConsoleAppen ...