自编码器是一种数据压缩算法,其中数据的压缩和解压缩函数是数据相关的、从样本中训练而来的。大部分自编码器中,压缩和解压缩的函数是通过神经网络实现的。

1. 使用卷积神经网络搭建自编码器

  • 导入MNIST数据集(灰度图,像素范围0~1)

    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', validation_size=0)
  • 搭建网络
      inputs_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='inputs')
    targets_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='targets')
    ### Encoder
    conv1 = tf.layers.conv2d(inputs_, 16, (3,3), padding='same', activation=tf.nn.relu) # 28x28x16
    maxpool1 = tf.layers.max_pooling2d(conv1, (2,2), (2,2), padding='same') # 14x14x16
    conv2 = tf.layers.conv2d(maxpool1, 8, (3,3), padding='same', activation=tf.nn.relu) # 14x14x8
    maxpool2 = tf.layers.max_pooling2d(conv2, (2,2), (2,2), padding='same') # 7x7x8
    conv3 = tf.layers.conv2d(maxpool2, 8, (3,3), padding='same', activation=tf.nn.relu) # 7x7x8
    encoded = tf.layers.max_pooling2d(conv3, (2,2), (2,2), padding='same') # 4x4x8
    ### Decoder
    upsample1 = tf.image.resize_nearest_neighbor(encoded, (7,7)) # 7x7x8
    conv4 = tf.layers.conv2d(upsample1, 8, (3,3), padding='same', activation=tf.nn.relu) # 7x7x8
    upsample2 = tf.image.resize_nearest_neighbor(conv4, (14,14)) # 14x14x8
    conv5 = tf.layers.conv2d(upsample2, 8, (3,3), padding='same', activation=tf.nn.relu) # 14x14x8
    upsample3 = tf.image.resize_nearest_neighbor(conv5, (28,28)) # 28x28x8
    conv6 = tf.layers.conv2d(upsample3, 16, (3,3), padding='same', activation=tf.nn.relu) # 28x28x16
    logits = tf.layers.conv2d(conv6, 1, (3,3), padding='same', activation=None) # 28x28x1
    decoded = tf.nn.sigmoid(logits, name='decoded') # 28x28x1
    ### Loss and Optimization:
    loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=targets_, logits=logits)
    cost = tf.reduce_mean(loss)
    opt = tf.train.AdamOptimizer(0.001).minimize(cost)

    模型在解码部分使用的是upsample+convolution而不是transposed convolution(参考文献

  • 训练网络
      sess = tf.Session()
    epochs = 20
    batch_size = 200
    sess.run(tf.global_variables_initializer())
    for e in range(epochs):
    for ii in range(mnist.train.num_examples//batch_size):
    batch = mnist.train.next_batch(batch_size)
    imgs = batch[0].reshape((-1, 28, 28, 1))
    batch_cost, _ = sess.run([cost, opt], feed_dict={inputs_: imgs, targets_: imgs})
    print("Epoch: {}/{}...".format(e+1, epochs), "Training loss: {:.4f}".format(batch_cost))
  • 检验网络
      fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4))
    in_imgs = mnist.test.images[:10]
    reconstructed, compressed = sess.run([decoded, encoded], feed_dict={inputs_: in_imgs.reshape((10, 28, 28, 1))})
    # plot
    for images, row in zip([in_imgs, reconstructed], axes):
    for img, ax in zip(images, row):
    ax.imshow(img.reshape((28, 28)), cmap='Greys_r')
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    fig.tight_layout(pad=0.1)
    sess.close()

2. 使用自编码器降噪

  • 搭建网络(同上但feature map的个数由16-8-8-8-8-16变为32-32-16-16-32-32)
  • 训练网络
      sess = tf.Session()
    epochs = 100
    batch_size = 200
    # Set's how much noise we're adding to the MNIST images
    noise_factor = 0.5
    sess.run(tf.global_variables_initializer())
    for e in range(epochs):
    for ii in range(mnist.train.num_examples//batch_size):
    batch = mnist.train.next_batch(batch_size)
    # Get images from the batch
    imgs = batch[0].reshape((-1, 28, 28, 1))
    # Add random noise to the input images
    noisy_imgs = imgs + noise_factor * np.random.randn(*imgs.shape)
    # Clip the images to be between 0 and 1
    noisy_imgs = np.clip(noisy_imgs, 0., 1.)
    # Noisy images as inputs, original images as targets
    batch_cost, _ = sess.run([cost, opt], feed_dict={inputs_: noisy_imgs, targets_: imgs})
    print("Epoch: {}/{}...".format(e+1, epochs), "Training loss: {:.4f}".format(batch_cost))
  • 检验网络
      fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4))
    in_imgs = mnist.test.images[:10]
    noisy_imgs = in_imgs + noise_factor * np.random.randn(*in_imgs.shape)
    noisy_imgs = np.clip(noisy_imgs, 0., 1.)
    reconstructed = sess.run(decoded, feed_dict={inputs_: noisy_imgs.reshape((10, 28, 28, 1))})
    for images, row in zip([noisy_imgs, reconstructed], axes):
    for img, ax in zip(images, row):
    ax.imshow(img.reshape((28, 28)), cmap='Greys_r')
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    fig.tight_layout(pad=0.1)
    sess.close()

使用Tensorflow搭建自编码器(Autoencoder)的更多相关文章

  1. TensorFlow实现自编码器及多层感知机

    1 自动编码机简介        传统机器学习任务在很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难 ...

  2. (转)一文学会用 Tensorflow 搭建神经网络

    一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day ...

  3. [DL学习笔记]从人工神经网络到卷积神经网络_3_使用tensorflow搭建CNN来分类not_MNIST数据(有一些问题)

    3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道 ...

  4. 用Tensorflow搭建神经网络的一般步骤

    用Tensorflow搭建神经网络的一般步骤如下: ① 导入模块 ② 创建模型变量和占位符 ③ 建立模型 ④ 定义loss函数 ⑤ 定义优化器(optimizer), 使 loss 达到最小 ⑥ 引入 ...

  5. 一文学会用 Tensorflow 搭建神经网络

    http://www.jianshu.com/p/e112012a4b2d 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码 ...

  6. 使用Tensorflow搭建回归预测模型之一:环境安装

    方法1:快速包安装 一.安装Anaconda 1.官网地址:https://www.anaconda.com/distribution/,选择其中一个版本下载即可,最好安装3.7版本,因为2.7版本2 ...

  7. 使用Tensorflow搭建回归预测模型之二:数据准备与预处理

    前言: 在前一篇中,已经搭建好了Tensorflow环境,本文将介绍如何准备数据与预处理数据. 正文: 在机器学习中,数据是非常关键的一个环节,在模型训练前对数据进行准备也预处理是非常必要的. 一.数 ...

  8. 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识

    用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如 ...

  9. 用TensorFlow搭建一个万能的神经网络框架(持续更新)

    我一直觉得TensorFlow的深度神经网络代码非常困难且繁琐,对TensorFlow搭建模型也十分困惑,所以我近期阅读了大量的神经网络代码,终于找到了搭建神经网络的规律,各位要是觉得我的文章对你有帮 ...

随机推荐

  1. java 之 实例方法和类方法

    类方法:使用static修饰(静态方法),属于整个类的,不是属于某个实例的,只能处理static域或调用static方法: 实例方法:属于对象的方法,由对象来调用. 判断类方法,类方法的前面有stat ...

  2. Mobilenet V1

    目录 1. Depth Separable Convolution 2. 网络结构 3. 宽度因子和分辨率因子 4. 代码实现 参考博客: https://cuijiahua.com/blog/201 ...

  3. 修改ElementUI样式的几种方式

    ElementUI是一款非常强大的前端UI组件库,它默认定义了很多美观的样式,但是我们在实际开发过程中不可避免地遇到需要修改ElementUI默认样式.下面总结了几种修改默认样式的方法. 1. 新建全 ...

  4. Webpack前世今生

    在正式介绍Webpack之前,先给大家说明一下前端为什么需要模块化 1.为什么需要模块化 1.1JS原始功能 在网页开发的早期,js制作作为一种脚本语言,做一些简单的表单验证或动画实现等,那个时候代码 ...

  5. Flutter-Tips

    1.报错:flutter: Another exception was thrown: Could not find a generator for route RouteSettings原因是一个工 ...

  6. Asp.NetCore3.1 WebApi 使用Jwt 授权认证使用

    1:导入NuGet包 Microsoft.AspNetCore.Authentication.JwtBearer 2:配置 jwt相关信息 3:在 startUp中 public void Confi ...

  7. 跟老刘学运维day01~谈红帽系统

    第0章 谈红帽系统 1.Linux,是一套免费使用和自由传播的类Unix操作系统,其源代码完全开源: 开源:==>将程序与程序的源代码一起提供给用户的服务模式. 开源四大特点:低风险.高品质.低 ...

  8. ANDROID自定义视图——onMeasure,MeasureSpec源码 流程 思路详解

    简介: 在自定义view的时候,其实很简单,只需要知道3步骤: 1.测量--onMeasure():决定View的大小 2.布局--onLayout():决定View在ViewGroup中的位置 3. ...

  9. Android:自定义BaseActivity基类

    使用BaseActivity可以封装一些重复代码例如设置标题栏颜色,封装一些工具类... 主要功能: 封装Toast 新建一个BaseActivity继承自Activity package com.o ...

  10. Android仿支付宝高顶部功能条伸缩动画

    参考:https://blog.csdn.net/aqi00/article/details/72621176