转自:https://blog.csdn.net/dkcgx/article/details/46652021

转自:https://blog.csdn.net/Reborn_Lee/article/details/83279843

conv(向量卷积运算)
所谓两个向量卷积,说白了就是多项式乘法。 比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下: 把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列,比如就按升幂吧,写出对应的多项式:1+2x+3x^2;同样的,把q的元素也作为多项式的系数按升幂排列,写出对应的多项式:1+x。
卷积就是“两个多项式相乘取系数”。 (1+2x+3x^2)×(1+x)=1+3x+5x^2+3x^3 所以p和q卷积的结果就是[1 3 5 3]。
记住,当确定是用升幂或是降幂排列后,下面也都要按这个方式排列,否则结果是不对的。 你也可以用matlab试试 p=[1 2 3] q=[1 1] conv(p,q) 看看和计算的结果是否相同。
conv2(二维矩阵卷积运算)
a=[1 1 1;1 1 1;1 1 1]; b=[1 1 1;1 1 1;1 1 1]; >> conv2(a,b)
ans =
     1     2     3     2     1

2     4     6     4     2

3     6     9     6     3

2     4     6     4     2

1     2     3     2     1
>> conv2(a,b,'valid')
ans =
     9
>> conv2(a,b,'same')
ans =

4     6     4

6     9     6

4     6     4
>> conv2(a,b,'full')
ans =

1     2     3     2     1

2     4     6     4     2

3     6     9     6     3

2     4     6     4     2

1     2     3     2     1

convn(n维矩阵卷积运算)

>> a=ones(5,5,5)
a(:,:,1) =

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1
a(:,:,2) =
     1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1
a(:,:,3) =
     1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1
a(:,:,4) =
     1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1
a(:,:,5) =
     1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1
>> b=ones(5,5,5);
>> convn(a,b,'valid')
ans =
   125
>> convn(a,b,'same')
ans(:,:,1) =
    27    36    45    36    27

36    48    60    48    36

45    60    75    60    45

36    48    60    48    36

27    36    45    36    27
ans(:,:,2) =
    36    48    60    48    36     48    64    80    64    48     60    80   100    80    60     48    64    80    64    48     36    48    60    48    36
ans(:,:,3) =
    45    60    75    60    45     60    80   100    80    60     75   100   125   100    75     60    80   100    80    60     45    60    75    60    45
ans(:,:,4) =
    36    48    60    48    36     48    64    80    64    48     60    80   100    80    60     48    64    80    64    48     36    48    60    48    36
ans(:,:,5) =
    27    36    45    36    27     36    48    60    48    36     45    60    75    60    45     36    48    60    48    36     27    36    45    36    27
>> convn(a,b)
ans(:,:,1) =
     1     2     3     4     5     4     3     2     1

2     4     6     8    10     8     6     4     2

3     6     9    12    15    12     9     6     3

4     8    12    16    20    16    12     8     4

5    10    15    20    25    20    15    10     5

4     8    12    16    20    16    12     8     4

3     6     9    12    15    12     9     6     3

2     4     6     8    10     8     6     4     2

1     2     3     4     5     4     3     2     1
ans(:,:,2) =
     2     4     6     8    10     8     6     4     2      4     8    12    16    20    16    12     8     4      6    12    18    24    30    24    18    12     6      8    16    24    32    40    32    24    16     8     10    20    30    40    50    40    30    20    10      8    16    24    32    40    32    24    16     8      6    12    18    24    30    24    18    12     6      4     8    12    16    20    16    12     8     4      2     4     6     8    10     8     6     4     2
ans(:,:,3) =
     3     6     9    12    15    12     9     6     3      6    12    18    24    30    24    18    12     6      9    18    27    36    45    36    27    18     9     12    24    36    48    60    48    36    24    12     15    30    45    60    75    60    45    30    15     12    24    36    48    60    48    36    24    12      9    18    27    36    45    36    27    18     9      6    12    18    24    30    24    18    12     6      3     6     9    12    15    12     9     6     3
ans(:,:,4) =
     4     8    12    16    20    16    12     8     4      8    16    24    32    40    32    24    16     8     12    24    36    48    60    48    36    24    12     16    32    48    64    80    64    48    32    16     20    40    60    80   100    80    60    40    20     16    32    48    64    80    64    48    32    16     12    24    36    48    60    48    36    24    12      8    16    24    32    40    32    24    16     8      4     8    12    16    20    16    12     8     4
ans(:,:,5) =
     5    10    15    20    25    20    15    10     5     10    20    30    40    50    40    30    20    10     15    30    45    60    75    60    45    30    15     20    40    60    80   100    80    60    40    20     25    50    75   100   125   100    75    50    25     20    40    60    80   100    80    60    40    20     15    30    45    60    75    60    45    30    15     10    20    30    40    50    40    30    20    10      5    10    15    20    25    20    15    10     5
ans(:,:,6) =
     4     8    12    16    20    16    12     8     4      8    16    24    32    40    32    24    16     8     12    24    36    48    60    48    36    24    12     16    32    48    64    80    64    48    32    16     20    40    60    80   100    80    60    40    20     16    32    48    64    80    64    48    32    16     12    24    36    48    60    48    36    24    12      8    16    24    32    40    32    24    16     8      4     8    12    16    20    16    12     8     4
ans(:,:,7) =
     3     6     9    12    15    12     9     6     3      6    12    18    24    30    24    18    12     6      9    18    27    36    45    36    27    18     9     12    24    36    48    60    48    36    24    12     15    30    45    60    75    60    45    30    15     12    24    36    48    60    48    36    24    12      9    18    27    36    45    36    27    18     9      6    12    18    24    30    24    18    12     6      3     6     9    12    15    12     9     6     3
ans(:,:,8) =
     2     4     6     8    10     8     6     4     2      4     8    12    16    20    16    12     8     4      6    12    18    24    30    24    18    12     6      8    16    24    32    40    32    24    16     8     10    20    30    40    50    40    30    20    10      8    16    24    32    40    32    24    16     8      6    12    18    24    30    24    18    12     6      4     8    12    16    20    16    12     8     4      2     4     6     8    10     8     6     4     2
ans(:,:,9) =
     1     2     3     4     5     4     3     2     1      2     4     6     8    10     8     6     4     2      3     6     9    12    15    12     9     6     3      4     8    12    16    20    16    12     8     4      5    10    15    20    25    20    15    10     5      4     8    12    16    20    16    12     8     4      3     6     9    12    15    12     9     6     3      2     4     6     8    10     8     6     4     2      1     2     3     4     5     4     3     2     1

conv

Convolution and polynomial multiplication

Syntax

w = conv(u,v)

w = conv(u,v,shape)

Description

w = conv(u,v)返回向量u和v的卷积。如果u和v是多项式系数的向量,则对它们进行卷积相当于将两个多项式相乘。

w = conv(u,v,shape) returns a subsection of the convolution, as specified by shape. For example, conv(u,v,'same') returns only the central part of the convolution, the same size as u, and conv(u,v,'valid') returns only the part of the convolution computed without the zero-padded edges.

w = conv(u,v,shape)返回卷积的子部分,由形状指定。 例如,conv(u,v,'same')仅返回卷积的中心部分,与u的大小相同,而conv(u,v,'valid')仅返回计算后的卷积部分而没有零填充边。


Polynomial Multiplication via Convolution

Create vectors u and v containing the coefficients of the polynomials x^2 + 1 and 2x + 7.

u = [1 0 1];
v = [2 7];

Use convolution to multiply the polynomials.

w = conv(u,v)
w = 1×4

     2     7     2     7

w contains the polynomial coefficients for  2x^3 + 7x^2 + 2x + 7.


Vector Convolution

Create two vectors and convolve them.

u = [1 1 1];
v = [1 1 0 0 0 1 1];
w = conv(u,v)
w = 1×9

     1     2     2     1     0     1     2     2     1

The length of w is length(u)+length(v)-1, which in this example is 9.


Central Part of Convolution

Create two vectors. Find the central part of the convolution of u and v that is the same size as u.

u = [-1 2 3 -2 0 1 2];
v = [2 4 -1 1];
w = conv(u,v,'same')
w = 1×7

    15     5    -9     7     6     7    -1

w has a length of 7. The full convolution would be of length length(u)+length(v)-1, which in this example would be 10.



matlab中卷积convolution与filter用法的更多相关文章

  1. matlab中norm与svd函数用法

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释: NORM Matrix or vector ...

  2. MATLAB中的max函数的用法及含义

    当A是一个列向量时候,返回一个最大值,在此不在赘述. 当Amxn是一个矩阵的时候,有以下几种情况: ①   C = max(max(A)),返回矩阵最大值 ②   D = max(A,[],1),返回 ...

  3. matlab中卷积编码参数的理解

    poly2trellis(7, [171 133])代表什么意思呢?首先是7,他是1*k的vector,此处k为1,[171 133]是k*n的vector,此处n就是2,那么这个编码就是1/2码率的 ...

  4. matlab中disp函数的简单用法

    输出数组类型的数据,也可以把string类型的数据看做数组输出 输出数字 >> num = ; >> disp(num) 输出字符串 >> disp('this i ...

  5. matlab中的卷积——filter,conv之间的区别

    %Matlab提供了计算线性卷积和两个多项式相乘的函数conv,语法格式w=conv(u,v),其中u和v分别是有限长度序列向量,w是u和v的卷积结果序列向量. %如果向量u和v的长度分别为N和M,则 ...

  6. 图像卷积、相关以及在MATLAB中的操作

    图像卷积.相关以及在MATLAB中的操作 2016年7月11日 20:34:35, By ChrisZZ 区分卷积和相关 图像处理中常常需要用一个滤波器做空间滤波操作.空间滤波操作有时候也被叫做卷积滤 ...

  7. matlab中fspecial Create predefined 2-D filter以及中值滤波均值滤波以及高斯滤波

    来源: 1.https://ww2.mathworks.cn/help/images/ref/fspecial.html?searchHighlight=fspecial&s_tid=doc_ ...

  8. Matlab中imfilter()函数的用法

    Matlab中imfilter()函数的用法 功能:对任意类型数组或多维图像进行滤波.用法:B = imfilter(A,H) B = imfilter(A,H,option1,option2,... ...

  9. MATLAB中conv2的详细用法 (以及【matlab知识补充】conv2、filter2、imfilter函数原理)

    转载: 1.https://blog.csdn.net/jinv5/article/details/52874880 2.https://blog.csdn.net/majinlei121/artic ...

随机推荐

  1. APM姿态控制流程

    对初学者了解控制流程有一定帮助 在主循环执行过程中(比如Pixhawk的任务调度周期2.5ms,400Hz:APM2.x为10ms,100Hz),每一个周期,程序会按下述步骤执行:• 首先,高层次文件 ...

  2. Android开发之设置应用设置全屏的两种解决方法 兼容android5.0等两种解决方法

    在开发中我们经常需要把我们的应用设置为全屏,有两种方法,一中是在代码中设置,另一种方法是在配置文件里改! 一.在代码中设置:  代码如下: package com.android.tutor; imp ...

  3. [BUUOJ记录] [CISCN 2019 初赛]Love Math & [NESTCTF 2019]Love Math 2

    主要考察利用已有函数构造危险函数绕过,实现RCE. 进入题目给出源码: <?php error_reporting(0); //听说你很喜欢数学,不知道你是否爱它胜过爱flag if(!isse ...

  4. 小程序开发-组件navigator导航篇

    navigator 页面链接 navigator的open-type属性 可选值 navigate.redirect.switchTab,对应于wx.navigateTo.wx.redirectTo. ...

  5. cdispaly的Grid布局与Flex布局

    cdispaly的Grid布局与Flex布局 Gird 布局与 Flex 布局有一定的相似性,都是对容器的内部项目进行划分. Flex 布局是轴线布局,只能指定项目针对轴线的位置,可以看作成一维布局 ...

  6. 详解 Python 的二元算术运算,为什么说减法只是语法糖?

    原题 | Unravelling binary arithmetic operations in Python 作者 | Brett Cannon 译者 | 豌豆花下猫("Python猫&q ...

  7. 给MySQL中数据表添加字段

    添加一个char字段: mysql> alter table stock add src char(20); Query OK, 3766 rows affected (0.65 sec) Re ...

  8. c++基础 写二进制文件

    问题描述 有许多数据待拟合,需要从 root 中提取出来,写成文本文件数据量过大,想转成二进制文件. 解决 #include "TString.h" #include " ...

  9. .NET Core表达式树的梳理

    最近要重写公司自己开发的ORM框架:其中有一部分就是查询的动态表达式:于是对这方面的东西做了一个简单的梳理 官网的解释: 表达式树以树形数据结构表示代码,其中每一个节点都是一种表达式,比如方法调用和  ...

  10. 微信小程序常用样式

    1.设置全局字体样式app.wxss: text{ font-family:MicroSoft yahei; } 2.设置弹性盒子模型: .container{ /*弹性模型*/ display:fl ...