文章转自:微信公众号【机器学习炼丹术】。文章转载或者交流联系作者微信:cyx645016617

喜欢的话可以参与文中的讨论、在文章末尾点赞、在看点一下呗。

0 概述

语义分割(Semantic Segmentation)是图像处理和机器视觉一个重要分支。与分类任务不同,语义分割需要判断图像每个像素点的类别,进行精确分割。语义分割目前在自动驾驶、自动抠图、医疗影像等领域有着比较广泛的应用。

上图为自动驾驶中的移动分割任务的分割结果,可以从一张图片中有效的识别出汽车(深蓝色),行人(红色),红绿灯(黄色),道路(浅紫色)等

Unet可以说是最常用、最简单的一种分割模型了,它简单、高效、易懂、容易构建、可以从小数据集中训练。

Unet已经是非常老的分割模型了,是2015年《U-Net: Convolutional Networks for Biomedical Image Segmentation》提出的模型

论文连接:https://arxiv.org/abs/1505.04597

在Unet之前,则是更老的FCN网络,FCN是Fully Convolutional Netowkrs的碎屑,不过这个基本上是一个框架,到现在的分割网络,谁敢说用不到卷积层呢。 不过FCN网络的准确度较低,不比Unet好用。现在还有Segnet,Mask RCNN,DeepLabv3+等网络,不过今天我先介绍Unet,毕竟一口吃不成胖子。

1 Unet

Unet其实挺简单的,所以今天的文章并不会很长。

1.1 提出初衷(不重要)

  1. Unet提出的初衷是为了解决医学图像分割的问题;
  2. 一种U型的网络结构来获取上下文的信息和位置信息;
  3. 在2015年的ISBI cell tracking比赛中获得了多个第一,一开始这是为了解决细胞层面的分割的任务的

1.2 网络结构

这个结构就是先对图片进行卷积和池化,在Unet论文中是池化4次,比方说一开始的图片是224x224的,那么就会变成112x112,56x56,28x28,14x14四个不同尺寸的特征。然后我们对14x14的特征图做上采样或者反卷积,得到28x28的特征图,这个28x28的特征图与之前的28x28的特征图进行通道伤的拼接concat,然后再对拼接之后的特征图做卷积和上采样,得到56x56的特征图,再与之前的56x56的特征拼接,卷积,再上采样,经过四次上采样可以得到一个与输入图像尺寸相同的224x224的预测结果。

其实整体来看,这个也是一个Encoder-Decoder的结构:



Unet网络非常的简单,前半部分就是特征提取,后半部分是上采样。在一些文献中把这种结构叫做编码器-解码器结构,由于网络的整体结构是一个大些的英文字母U,所以叫做U-net。

  • Encoder:左半部分,由两个3x3的卷积层(RELU)再加上一个2x2的maxpooling层组成一个下采样的模块(后面代码可以看出);
  • Decoder:有半部分,由一个上采样的卷积层(去卷积层)+特征拼接concat+两个3x3的卷积层(ReLU)反复构成(代码中可以看出来);

在当时,Unet相比更早提出的FCN网络,使用拼接来作为特征图的融合方式。

  • FCN是通过特征图对应像素值的相加来融合特征的;
  • U-net通过通道数的拼接,这样可以形成更厚的特征,当然这样会更佳消耗显存;

Unet的好处我感觉是:网络层越深得到的特征图,有着更大的视野域,浅层卷积关注纹理特征,深层网络关注本质的那种特征,所以深层浅层特征都是有格子的意义的;另外一点是通过反卷积得到的更大的尺寸的特征图的边缘,是缺少信息的,毕竟每一次下采样提炼特征的同时,也必然会损失一些边缘特征,而失去的特征并不能从上采样中找回,因此通过特征的拼接,来实现边缘特征的一个找回。

2 为什么Unet在医疗图像分割种表现好

这是一个开放性的问题,大家如果有什么看法欢迎回复讨论。

大多数医疗影像语义分割任务都会首先用Unet作为baseline,当然上一章节讲解的Unet的优点肯定是可以当作这个问题的答案,这里谈一谈医疗影像的特点

根据网友的讨论,得到的结果:

  1. 医疗影像语义较为简单、结构固定。因此语义信息相比自动驾驶等较为单一,因此并不需要去筛选过滤无用的信息。医疗影像的所有特征都很重要,因此低级特征和高级语义特征都很重要,所以U型结构的skip connection结构(特征拼接)更好派上用场

  2. 医学影像的数据较少,获取难度大,数据量可能只有几百甚至不到100,因此如果使用大型的网络例如DeepLabv3+等模型,很容易过拟合。大型网络的优点是更强的图像表述能力,而较为简单、数量少的医学影像并没有那么多的内容需要表述,因此也有人发现在小数量级中,分割的SOTA模型与轻量的Unet并没有神恶魔优势

  3. 医学影像往往是多模态的。比方说ISLES脑梗竞赛中,官方提供了CBF,MTT,CBV等多中模态的数据(这一点听不懂也无妨)。因此医学影像任务中,往往需要自己设计网络去提取不同的模态特征,因此轻量结构简单的Unet可以有更大的操作空间。

3 Pytorch模型代码

这个是我自己写的代码,所以并不是很精简,但是应该很好理解,和我之前讲解的完全一致,(有任何问题都可以和我交流:cyx645016617):

import torch
import torch.nn as nn
import torch.nn.functional as F class double_conv2d_bn(nn.Module):
def __init__(self,in_channels,out_channels,kernel_size=3,strides=1,padding=1):
super(double_conv2d_bn,self).__init__()
self.conv1 = nn.Conv2d(in_channels,out_channels,
kernel_size=kernel_size,
stride = strides,padding=padding,bias=True)
self.conv2 = nn.Conv2d(out_channels,out_channels,
kernel_size = kernel_size,
stride = strides,padding=padding,bias=True)
self.bn1 = nn.BatchNorm2d(out_channels)
self.bn2 = nn.BatchNorm2d(out_channels) def forward(self,x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
return out class deconv2d_bn(nn.Module):
def __init__(self,in_channels,out_channels,kernel_size=2,strides=2):
super(deconv2d_bn,self).__init__()
self.conv1 = nn.ConvTranspose2d(in_channels,out_channels,
kernel_size = kernel_size,
stride = strides,bias=True)
self.bn1 = nn.BatchNorm2d(out_channels) def forward(self,x):
out = F.relu(self.bn1(self.conv1(x)))
return out class Unet(nn.Module):
def __init__(self):
super(Unet,self).__init__()
self.layer1_conv = double_conv2d_bn(1,8)
self.layer2_conv = double_conv2d_bn(8,16)
self.layer3_conv = double_conv2d_bn(16,32)
self.layer4_conv = double_conv2d_bn(32,64)
self.layer5_conv = double_conv2d_bn(64,128)
self.layer6_conv = double_conv2d_bn(128,64)
self.layer7_conv = double_conv2d_bn(64,32)
self.layer8_conv = double_conv2d_bn(32,16)
self.layer9_conv = double_conv2d_bn(16,8)
self.layer10_conv = nn.Conv2d(8,1,kernel_size=3,
stride=1,padding=1,bias=True) self.deconv1 = deconv2d_bn(128,64)
self.deconv2 = deconv2d_bn(64,32)
self.deconv3 = deconv2d_bn(32,16)
self.deconv4 = deconv2d_bn(16,8) self.sigmoid = nn.Sigmoid() def forward(self,x):
conv1 = self.layer1_conv(x)
pool1 = F.max_pool2d(conv1,2) conv2 = self.layer2_conv(pool1)
pool2 = F.max_pool2d(conv2,2) conv3 = self.layer3_conv(pool2)
pool3 = F.max_pool2d(conv3,2) conv4 = self.layer4_conv(pool3)
pool4 = F.max_pool2d(conv4,2) conv5 = self.layer5_conv(pool4) convt1 = self.deconv1(conv5)
concat1 = torch.cat([convt1,conv4],dim=1)
conv6 = self.layer6_conv(concat1) convt2 = self.deconv2(conv6)
concat2 = torch.cat([convt2,conv3],dim=1)
conv7 = self.layer7_conv(concat2) convt3 = self.deconv3(conv7)
concat3 = torch.cat([convt3,conv2],dim=1)
conv8 = self.layer8_conv(concat3) convt4 = self.deconv4(conv8)
concat4 = torch.cat([convt4,conv1],dim=1)
conv9 = self.layer9_conv(concat4)
outp = self.layer10_conv(conv9)
outp = self.sigmoid(outp)
return outp model = Unet()
inp = torch.rand(10,1,224,224)
outp = model(inp)
print(outp.shape)
==> torch.Size([10, 1, 224, 224])

先把上采样和两个卷积层分别构建好,供Unet模型构建中重复使用。然后模型的输出和输入是相同的尺寸,说明模型可以运行。

参考博客:

  1. https://blog.csdn.net/wangdongwei0/article/details/82393275
  2. https://www.zhihu.com/question/269914775?sort=created
  3. https://zhuanlan.zhihu.com/p/90418337

图像分割必备知识点 | Unet详解 理论+ 代码的更多相关文章

  1. 图像分割必备知识点 | Unet++超详解+注解

    文章来自周纵苇大佬的知乎,是Unet++模型的一作大佬,其在2019年底详细剖析了Unet++模型,讲解的非常好.所以在此做一个搬运+个人的理解. 文中加粗部分为个人做的注解.需要讨论交流的朋友可以加 ...

  2. Android java程序员必备技能,集合与数组中遍历元素,增强for循环的使用详解及代码

    Android java程序员必备技能,集合与数组中遍历元素, 增强for循环的使用详解及代码 作者:程序员小冰,CSDN博客:http://blog.csdn.net/qq_21376985 For ...

  3. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  4. Python - 元组(tuple) 详解 及 代码

    元组(tuple) 详解 及 代码 本文地址: http://blog.csdn.net/caroline_wendy/article/details/17290967 元组是存放任意元素集合,不能修 ...

  5. Python - 字典(dict) 详解 及 代码

    字典(dict) 详解 及 代码 本文地址: http://blog.csdn.net/caroline_wendy/article/details/17291329 字典(dict)是表示映射的数据 ...

  6. C#的String.Split 分割字符串用法详解的代码

    代码期间,把代码过程经常用的内容做个珍藏,下边代码是关于C#的String.Split 分割字符串用法详解的代码,应该对码农们有些用途. 1) public string[] Split(params ...

  7. laravel 框架配置404等异常页面的方法详解(代码示例)

    本篇文章给大家带来的内容是关于laravel 框架配置404等异常页面的方法详解(代码示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助. 在Laravel中所有的异常都由Handl ...

  8. 【转载】 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    原文地址: https://www.cnblogs.com/further-further-further/p/10430073.html ------------------------------ ...

  9. UIWebView用法详解及代码分享

    今天我们来详细UIWebView用法.UIWebView是iOS内置的浏览器控件,可以浏览网页.打开文档等 能够加载html/htm.pdf.docx.txt等格式的文件. 用UIWebView我们就 ...

随机推荐

  1. Stimulsoft报表工具中属性表达式设置属性表达式

    Stimulsoft仪表工具实现所需的数据可视化和自己的信息图表.该产品能够应用必要的过滤器和排序,汇总数据,执行任何复杂度的计算.该产品的优势在于其多功能性-能够为您的业务,财务,销售,行业等任何领 ...

  2. 走在深夜的小码农 Fourth Day

    Css3 Fourth Day writer:late at night codepeasant 学习大纲 一.emmet语法 1.简介 ​ Emmet语法的前身是Zen coding,它使用缩写,来 ...

  3. python机器学习之支持向量机SVM

    支持向量机SVM(Support Vector Machine) 关注公众号"轻松学编程"了解更多. [关键词]支持向量,最大几何间隔,拉格朗日乘子法 一.支持向量机的原理 Sup ...

  4. [Luogu P3119] [USACO15JAN]草鉴定Grass Cownoisseur (缩点+图上DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P3119 Solution 这题显然要先把缩点做了. 然后我们就可以考虑如何处理走反向边的问题. 像我这样的 ...

  5. Union-Find算法应用

    上篇文章很多读者对于 Union-Find 算法的应用表示很感兴趣,这篇文章就拿几道 LeetCode 题目来讲讲这个算法的巧妙用法. 首先,复习一下,Union-Find 算法解决的是图的动态连通性 ...

  6. Spring AOP实现注解式的Mybatis多数据源切换

    一.为什么要使用多数据源切换? 多数据源切换是为了满足什么业务场景?正常情况下,一个微服务或者说一个WEB项目,在使用Mybatis作为数据库链接和操作框架的情况下通常只需要构建一个系统库,在该系统库 ...

  7. NOIP 2013 P1967 货车运输

    倍增求LCA+最大生成树 题目给出的是一张图,在图上有很多算法无法实现,所以要将其转化为树 题中可以发现货车的最后的载重量是由权值最小的一条边决定的,所以我们求最大生成树 求完最大生成树后我们得到一个 ...

  8. 2.5远程仓的库使用-2.7Git别名

    2.5 远程仓库的使用 查看远程仓库 git remote # -v 选项会显示需要读写远程仓库使用的 Git 保存的简写与其对应的 URL 添加远程仓库 git remote add <sho ...

  9. Round 4

    最近再次经历动荡期 博客只在小白时期记录过 已经沉寂许久 之前的工作在黄区 加班超多  阻隔了一切与外网交流的可能 只能凭记忆补一点最近一年来积累到的知识 不管怎么样 不能放弃自己啊老铁!

  10. leetcode133:3sum-closest

    题目描述 给出含有n个整数的数组s,找出s中和加起来的和最接近给定的目标值的三个整数.返回这三个整数的和.你可以假设每个输入都只有唯一解. 例如,给定的整数 S = {-1 2 1 -4}, 目标值 ...