poj2411 Mondriaan's Dream (轮廓线dp、状压dp)
Mondriaan's Dream
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 17203 | Accepted: 9918 |
Description
Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!
Input
Output
Sample Input
1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0
Sample Output
1
0
1
2
3
5
144
51205
题意:
用 1 x 2 的矩形骨牌覆盖 h x w 的矩形,问有多少种不同的覆盖方法。
思路:
轮廓线dp(状压dp),以一个 w(矩形的宽) 位的二进制数(设为 k)表示一个状态,对应位上的 0 表示未覆盖的状态、1 表示已覆盖。
我们以从左到右、从上倒下的顺序做决策,要决策的点是 k 所表示的状态的下一个位置,以此点作为骨牌的右下角,
即:若我们在当前点竖着放置一块骨牌,它将覆盖当前点和正上方一点;若我们横着放置一块骨牌,它将覆盖当前点和左边的点。只有这样决策,才保证了是从之前的状态转移过来。
且以上述方式记录状态,k 的最高位正好是决策点的正上方一点,最低位是决策点的左边一点,并且我们每次决策都要保证最高位为 1 ,否则在以后的决策中都无法为其覆盖骨牌,也就无法达到全覆盖的要求。
这样,对于每个点都有三种决策方式:
- 放一块竖着的骨牌,要满足的条件有:k 的最高位不为 1 ;当前点不在第一行。则转移后的状态是 curk = k<<1|1,左移一位并将最低位覆盖;
- 放一块横着的骨牌,要满足的条件有:k 的最高位是1、最低位不试 1;当前点不在第一列。转移后的状态是 curk=(k|1)<<1|1,在覆盖最低位,左移一位后再覆盖最低位;
- 不妨骨牌,要满足的条件有: k 的最高位是 1;状态 curk = k<<1;
注:每次状态转移后都要清除高于 w 位的多余位,这些并不是状态的一部分;左移得到下一状态应该好理解。
代码:
#include<iostream>
#include<bitset>
#include<cstring>
using namespace std;
const long long maxn = 12, INF = 0x3f3f3f3f; long long dp[2][1<<maxn];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0); long long h, w;
while(cin>>h>>w && (h+w))
{
memset(dp, 0, sizeof(dp));
long long cur=0, curk;
dp[cur][(1<<w)-1]=1;
for(int i=0; i<h; ++i)
{
for(int j=0; j<w; ++j)
{
cur=1-cur;
memset(dp[cur], 0, sizeof(dp[cur]));
for(int k=0; k<(1<<w); ++k)
{
if(i>0 && !(k&(1<<(w-1))))//放一块竖着的骨牌,覆盖当前位置和正上方的位置
{
curk=k<<1|1;
curk=curk&((1<<w)-1);//清除多余的位
dp[cur][curk]+=dp[1-cur][k];
}
if(j>0 && !(k&1) && (k&(1<<(w-1))))//放一块横着的骨牌,覆盖当前位置和左边的位置
{
curk=(k|1)<<1|1;
curk=curk&((1<<w)-1);
dp[cur][curk]+=dp[1-cur][k];
}
if((k&(1<<(w-1))))//不放
{
curk=k<<1;
curk=curk&((1<<w)-1);
dp[cur][curk]+=dp[1-cur][k];
}
}
}
}
cout<<dp[cur][(1<<w)-1]<<endl;
}
return 0;
}
poj2411 Mondriaan's Dream (轮廓线dp、状压dp)的更多相关文章
- 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP
[题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...
- CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...
- hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)
传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...
- [转]状态压缩dp(状压dp)
状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...
- 状态压缩dp 状压dp 详解
说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...
- 洛谷 P3343 - [ZJOI2015]地震后的幻想乡(朴素状压 DP/状压 DP+微积分)
题面传送门 鸽子 tzc 竟然来补题解了,奇迹奇迹( 神仙题 %%%%%%%%%%%% 解法 1: 首先一件很明显的事情是这个最小值可以通过类似 Kruskal 求最小生成树的方法求得.我们将所有边按 ...
- POJ2411 Mondriaan's Dream 轮廓线dp
第一道轮廓线dp,因为不会轮廓线dp我们在南京区域赛的时候没有拿到银,可见知识点的欠缺是我薄弱的环节. 题目就是要你用1*2的多米诺骨排填充一个大小n*m(n,m<=11)的棋盘,问填满它有多少 ...
- 51nod 1673 树有几多愁(链表维护树形DP+状压DP)
题意 lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输出 ...
- BZOJ3836 [Poi2014]Tourism 【树形dp +状压dp】
题目链接 BZOJ3836 题解 显然这是个\(NP\)完全问题,此题的解决全仗任意两点间不存在节点数超过10的简单路径的性质 这意味着什么呢? \(dfs\)树深度不超过\(10\) \(10\)很 ...
- bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2989 Solved: 1557[Submit][Statu ...
随机推荐
- TCP报文结构和长短连接
参考博文: https://www.cnblogs.com/onlysun/p/4520553.html https://blog.csdn.net/zxy987872674/article/deta ...
- 信号、多app应用、flask-script
信号 Flask 框架中的信号基于blinker,其只要就是让开发者可以在flak请求过程中制定一些用户行为 安装:pip3 install blinker 内置信号 request_started ...
- pandas读取MySql/SqlServer数据
用过的东西总是会忘记,尤其是细节,还是记下来比较靠谱. 读取MySql数据 1 import MySQLdb 2 import pandas as pd 3 4 conn = MySQLdb.conn ...
- 在Ubuntu下部署Flask项目
FlaskDemo 命名为test.py # coding=utf-8 from flask import Flask app = Flask(__name__) @app.route("/ ...
- python 魔法方法诠释
什么是Python魔法方法 什么是魔法方法呢?它们在面向对象的Python的处处皆是.它们是一些可以让你对类添加"魔法"的特殊方法. 它们经常是两个下划线包围来命名的(比如 ini ...
- Ajax接收int类型乱码
在Ajax返回值类型是 "text" 的时候,接收int类型时可能会出现ၧ 解决方法:将int转为String即可 int money =100; String s = Integ ...
- 2020我终于成功搭建了Metasploitable3靶机
0x00前言 在学习metasploit时我们往往需要一个靶场,下面为大家介绍一下如何在虚拟机中安装metasploitable 3靶场.Metasploitable3是Metasploitable2 ...
- Python3基础——函数
ython 函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你也可 ...
- #error: Building MFC application with /MD[d] (CRT dll version) requires MFC shared dll version. Please #define _AFXDLL or do not use /MD[d]
转载:https://www.cnblogs.com/cvwyh/p/10570920.html 错误 在使用VS编译文件时出现了如下错误: #error: Building MFC applicat ...
- CF877E Danil and a Part-time Job
题目大意: link 有一棵 n 个点的树,根结点为 1 号点,每个点的权值都是 1 或 0 共有 m 次操作,操作分为两种 get 询问一个点 x 的子树里有多少个 1 pow 将一个点 x 的子树 ...