https://open.kattis.com/problems/researchproductivityindex

这道题是考场上没写出来的一道题,今年看看感觉简单到不像话,当时自己对于dp没有什么概念,所以导致考场只能空流泪

首先问期望,肯定就要确定概率。看到这个

就知道肯定一块求是不太好写的,先求上面,上面求发表的期望,那么对于期望我们有e(x) = Σxipi

这里p知道了但是xi不知道,那么我们根据题目描述我们有一个分子一个分母,分子是发表的次数,分母是论文数,首先对于任何j篇论文发表了 i 篇来讲,都无外乎两种情况,一个是上一篇就发表了这么多,这一篇虽然多了一篇论文但没有对论文发表数产生贡献,那么这种情况概率 1- p,第二种情况就是这种发表了,这种情况概率是p

那么状态转移方程显然就有

dp[i][j] = (a[i]) * dp[i - 1][j - 1] + (1 - a[i]) * dp[i - 1][j];//新增没发表和发表

我们要求最大,所以要先从几率大的开始发表,sort一遍(我脑残还降序排了,赶紧reverse),然后不发表的次数initialize一下,求出来上面那一拨东西之后就再转化成发表成功次数,pow函数求解,枚举,看哪个大就可了,真的超级简单一个dp,md去年的没做出来真是耻辱啊啊啊啊

#include <bits/stdc++.h>
using namespace std;
#define limit (100 + 5)//防止溢出
#define INF 0x3f3f3f3f
#define inf 0x3f3f3f3f3f
#define lowbit(i) i&(-i)//一步两步
#define EPS 1e-6
#define FASTIO ios::sync_with_stdio(false);cin.tie(0);
#define ff(a) printf("%d\n",a );
#define pi(a,b) pair<a,b>
#define rep(i, a, b) for(ll i = a; i <= b ; ++i)
#define per(i, a, b) for(ll i = b ; i >= a ; --i)
#define MOD 998244353
#define traverse(u) for(int i = head[u]; ~i ; i = edge[i].next)
#define FOPEN freopen("C:\\Users\\tiany\\CLionProjects\\acm_01\\data.txt", "rt", stdin)
#define FOUT freopen("C:\\Users\\tiany\\CLionProjects\\acm_01\\dabiao.txt", "wt", stdout)
#define debug(x) cout<<x<<endl
typedef long long ll;
typedef unsigned long long ull;
inline ll read(){
ll sign = 1, x = 0;char s = getchar();
while(s > '9' || s < '0' ){if(s == '-')sign = -1;s = getchar();}
while(s >= '0' && s <= '9'){x = (x << 3) + (x << 1) + s - '0';s = getchar();}
return x * sign;
}//快读
void write(ll x){
if(x < 0) putchar('-'),x = -x;
if(x / 10) write(x / 10);
putchar(x % 10 + '0');
}
int n;
double a[limit];
double dp[limit][limit];//代表在i篇论文发表了j篇,
int main() {
#ifdef LOCAL
FOPEN;
#endif
n = read(); rep(i ,1,n){
a[i] = (1.0 * read()) / 100;
} sort(a + 1, a + 1 + n);
reverse(a + 1, a + 1 + n);
dp[0][0] = 1;
dp[1][1] = a[1];
dp[1][0] = 1 - a[1];
rep(i ,2,n)dp[i][0] = dp[i - 1][0] * (1 - a[i]), dp[i][i] = dp[i - 1][ i - 1] * a[i];
rep(i ,1,n){
rep(j, 1,i){
dp[i][j] = (a[i]) * dp[i - 1][j - 1] + (1 - a[i]) * dp[i - 1][j];//新增没发表和发表
}
}
double ans = 0;
rep(i ,1,n){
double tmp = 0;
rep(j, 1,i){
tmp += dp[i][j] * pow(j,1.0 * j / (1.0 * i));
}
ans = max(tmp, ans);
}
cout<<fixed<<setprecision(6)<<ans<<endl;
return 0;
}

2019 ACM/ICPC North America Qualifier G.Research Productivity Index(概率期望dp)的更多相关文章

  1. Bumped! 2017 ICPC North American Qualifier Contest (分层建图+dijstra)

    题目描述 Peter returned from the recently held ACM ICPC World finals only to find that his return flight ...

  2. East Central North America 2006 Hie with the Pie /// 状压dp oj22470

    题目大意: 输入n,有n个地方(1~n)需要送pizza pizza点为0点 接下来n+1行每行n+1个值 表示 i 到 j 的路径长度 输出从0点到各点送pizza最后回到0点的最短路(点可重复走) ...

  3. North America Qualifier (2015)

    https://icpc.baylor.edu/regionals/finder/north-america-qualifier-2015 一个人打.... B 概率问题公式见代码 #include ...

  4. 有关信息ACM/ICPC竞争环境GCC/G++叠插件研究记录的扩展

    0.起因 有时.DFS总是比BFS受人喜爱--毕竟DFS简单粗暴,更,而有些东西BFS不要启动,DFS它似乎是一个可行的选择-- 但是有一个问题,DFS默认直接写入到系统堆栈.系统堆栈和足够浅,此时O ...

  5. 2019 ACM/ICPC 全国邀请赛(西安)J And And And (树DP+贡献计算)

    Then n - 1n−1 lines follow. ii-th line contains two integers f_{a_i}(1 \le f_{a_i} < i)fai​​(1≤fa ...

  6. 2019 ACM/ICPC Asia Regional shanxia D Miku and Generals (二分图黑白染色+01背包)

    Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...

  7. ACM ICPC 2015 Moscow Subregional Russia, Moscow, Dolgoprudny, October, 18, 2015 G. Garden Gathering

    Problem G. Garden Gathering Input file: standard input Output file: standard output Time limit: 3 se ...

  8. ACM ICPC China final G Pandaria

    目录 ACM ICPC China final G Pandaria ACM ICPC China final G Pandaria 题意:给一张\(n\)个点\(m\)条边的无向图,\(c[i]\) ...

  9. 2014嘉杰信息杯ACM/ICPC湖南程序设计邀请赛暨第六届湘潭市程序设计竞赛

    比赛链接: http://202.197.224.59/OnlineJudge2/index.php/Contest/problems/contest_id/36 题目来源: 2014嘉杰信息杯ACM ...

随机推荐

  1. 分布式文档存储数据库之MongoDB基础入门

    一.MongoDB简介 MongoDB是用c++语言开发的一款易扩展,易伸缩,高性能,开源的,schema free 的基于文档的nosql数据库:所谓nosql是指不仅仅是sql的意思,它拥有部分s ...

  2. 3.2spring源码系列----循环依赖源码分析

    首先,我们在3.1 spring5源码系列--循环依赖 之 手写代码模拟spring循环依赖 中手写了循环依赖的实现. 这个实现就是模拟的spring的循环依赖. 目的是为了更容易理解spring源码 ...

  3. (数据科学学习手札98)纯Python绘制满满艺术感的山脊地图

    本文示例代码及附件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 下面的这幅图可能很多读者朋友们都看到过,这 ...

  4. JavaScript探秘:可执行的上下文堆栈

    这一系列的文章,挺不错的,值得收藏细读 JavaScript探秘:可执行的上下文堆栈

  5. Socket bind系统调用简要分析

    主要查看linux kernel 源码:Socket.c 以及af_inet.c文件 1.1 bind分析 #include <sys/types.h> /* See NOTES */#i ...

  6. linux netfilter rule match target 数据结构

    对于netfilter 可以参考 https://netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO-3.html netfilter ...

  7. Javaer 进阶必看的 RocketMQ ,就这篇了

    每个时代,都不会亏待会学习的人. 大家好,我是 yes. 继上一篇 头条终面:写个消息中间件 ,我提到实现消息中间件的一些关键点,今天就和大家一起深入生产级别消息中间件 - RocketMQ 的内核实 ...

  8. CSS opacity设置不透明度

    1.opacity设置不透明度 opacity会将含有这个属性的子类都变成具有opacity属性,可以改变元素.元素内容.字标签的不透明度.而rgba只会改变设置的那个背景颜色的透明度效果 <! ...

  9. C++ const的自我理解

    C++学习笔记–const const 是 constant 的缩写,本意是不变的,不易改变的意思.在 C++ 中是用来修饰内置类型变量,自定义对象,成员函数,返回值,函数参数. C++ const ...

  10. 实验吧[WEB]——what a fuck!这是什么鬼东西?

    解题链接:http://ctf5.shiyanbar.com/DUTCTF/1.html 原题链接:http://www.shiyanbar.com/ctf/56 解题必看: 的jother编码定义: ...