hdu2157 How many ways??
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2181 Accepted Submission(s): 816
你可决定了葱头一天能看多少校花哦
接下来的T行, 每行有三个整数 A, B, k, 表示问你从A 点到 B点恰好经过k个点的方案数 (k < 20), 可以走重复边。如果不存在这样的走法, 则输出0
当n, m都为0的时候输入结束
0 1
0 2
1 3
2 3
2
0 3 2
0 3 3
3 6
0 1
1 0
0 2
2 0
1 2
2 1
2
1 2 1
0 1 3
0 0
0
1
3
#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define MOD 1000
int gra[25][25];
struct matrix{
ll n,m,i;
ll data[99][99];
void init_danwei(){
for(i=0;i<n;i++){
data[i][i]=1;
}
}
};
matrix multi(matrix &a,matrix &b){
ll i,j,k;
matrix temp;
temp.n=a.n;
temp.m=b.m;
for(i=0;i<temp.n;i++){
for(j=0;j<temp.m;j++){
temp.data[i][j]=0;
}
}
for(i=0;i<a.n;i++){
for(k=0;k<a.m;k++){
if(a.data[i][k]>0){
for(j=0;j<b.m;j++){
temp.data[i][j]=(temp.data[i][j]+(a.data[i][k]*b.data[k][j])%MOD )%MOD;
}
}
}
}
return temp;
}
matrix fast_mod(matrix &a,ll n){
matrix ans;
ans.n=a.n;
ans.m=a.m;
memset(ans.data,0,sizeof(ans.data));
ans.init_danwei();
while(n>0){
if(n&1)ans=multi(ans,a);
a=multi(a,a);
n>>=1;
}
return ans;
}
int main()
{
ll n,m,i,j,c,d,k,T;
while(scanf("%lld%lld",&n,&m)!=EOF)
{
if(n==0 && m==0)break;
matrix a;
memset(a.data,0,sizeof(a.data));
a.n=a.m=n;
for(i=1;i<=m;i++){
scanf("%lld%lld",&c,&d);
a.data[c][d]=1;
}
scanf("%lld",&T);
while(T--)
{
scanf("%lld%lld%lld",&c,&d,&k);
matrix b;
memset(b.data,0,sizeof(b.data));
b.n=b.m=n;
for(i=0;i<n;i++){
for(j=0;j<n;j++){
b.data[i][j]=a.data[i][j];
}
}
matrix ans;
ans=fast_mod(b,k);
printf("%lld\n",ans.data[c][d]%MOD);
}
}
return 0;
}
hdu2157 How many ways??的更多相关文章
- HDU----(2157)How many ways??(快速矩阵幂)
How many ways?? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- HDU2157 How many ways??---(邻接矩阵,图论,矩阵快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=2157 How many ways?? Time Limit: 2000/1000 MS (Java/Others ...
- hdu-2157 How many ways??(矩阵快速幂)
题目链接: How many ways?? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- ☆ [HDU2157] How many ways?? 「矩阵乘法求路径方案数」
传送门:>Here< 题意:给出一张有向图,问从点A到点B恰好经过k个点(包括终点)的路径方案数 解题思路 一道矩阵乘法的好题!妙哉~ 话说把矩阵乘法放在图上好神奇,那么跟矩阵唯一有关的就 ...
- HDU2157 How many ways矩阵再识
春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线去教室 ...
- [HDU2157]How many ways??(DP + 矩阵优化)
传送门 k < 20 k这么小,随便dp一下就好了... dp[i][j][k]表示从i到j经过k个点的方案数 4重循环.. 但是如果k很大就不好弄了 把给定的图转为邻接矩阵,即A(i,j)=1 ...
- [日常摸鱼]HDU2157 How many ways??
hhh我又开始水题目了 题意:给一张有向图,多次询问一个点到另一个点刚好走$k$步的方案数取模,点数很小 每个$a,b,k$的询问直接把邻接矩阵$map$自乘$k$次后$map[a][b]$就是答案了 ...
- How many ways?? - hdu2157(矩阵快速幂-模板)
分析:求Map^k,刚开始没有用快速幂,TLE了 代码如下: =================================================================== ...
- How many ways??---hdu2157(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2157 题意:有一个有向图,含有n个节点,m条边,Q个询问,每个询问有 s,t,p,求 s 到 t ...
随机推荐
- 【SpringBoot1.x】SpringBoot1.x 缓存
SpringBoot1.x 缓存 文章源码 JSR107 Java Caching 定义了 5 个核心接口,分别为: CachingProvider 定义了创建.配置.获取.管理和控制多个 Cache ...
- 【译】Async/Await(二)——Futures
原文标题:Async/Await 原文链接:https://os.phil-opp.com/async-await/#multitasking 公众号: Rust 碎碎念 翻译 by: Praying ...
- grep和egrep
grep nobody /etc/passwd 显示/etc/passwd中带有nobody字样的行,区分大小写 grep -i nobody /etc/passwd 现实/etc/passwd中 ...
- 2021年正确的Android逆向开发学习之路
2021年正确的Android逆向开发学习之路 说明 文章首发于HURUWO的博客小站,本平台做同步备份发布.如有浏览或访问异常或者相关疑问可前往原博客下评论浏览. 原文链接 2021年正确的Andr ...
- kafka(三)原理剖析
一.生产者消息分区机制原理剖析 在使用Kafka 生产和消费消息的时候,肯定是希望能够将数据均匀地分配到所有服务器上.比如很多公司使用 Kafka 收集应用服务器的日志数据,这种数据都是很多的,特别是 ...
- 小白的经典CNN复现(二):LeNet-5
小白的经典CNN复现(二):LeNet-5 各位看官大人久等啦!我胡汉三又回来辣(不是 最近因为到期末考试周,再加上老板临时给安排了个任务,其实LeNet-5的复现工作早都搞定了,结果没时间写这个博客 ...
- .NET Core部署到linux(CentOS)最全解决方案,高阶篇(Docker+Nginx 或 Jexus)
在前两篇: .NET Core部署到linux(CentOS)最全解决方案,常规篇 .NET Core部署到linux(CentOS)最全解决方案,进阶篇(Supervisor+Nginx) 我们对. ...
- 网络编程-I/O复用
I/O模型 Unix下可用的I/O模型有五种: 阻塞式I/O 非阻塞式I/O I/O复用(select和poll.epoll) 信号驱动式I/O(SIGIO) 异步I/O(POSIX的aio_系列函数 ...
- VMware中安装Ubuntu后,安装VMwareTools提示“Not enough free space to extract VMwareTools-10.3.10-13959562.tar.gz”的解决办法
将加载后的Vmware Tools中的*.tar.gz文件复制到桌面后提取,否则会报错:
- NIO非阻塞网络编程原理
NIO非阻塞网络编程原理 1.NIO基本介绍 Java NIO 全称 java non-blocking IO,是指 JDK 提供的新 API.从 JDK1.4 开始,Java 提供了一系列改进的 输 ...