GCD HDU - 1695 容斥原理(复杂度低的版本)
题意:
让你从区间[a,b]里面找一个数x,在区间[c,d]里面找一个数y。题目上已经设定a=b=1了。问你能找到多少对GCD(x,y)=k。x=5,y=7和y=5,x=7是同一对
题解:
弄了半天才知道我得容斥原理方法卡时间了,我那个复杂度太高了。。。卧槽了
老版本的这里可以看:HDU - 4135 容斥原理
下面说一下复杂度低的容斥原理的思想
这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
对于这道题[1,b]转化为[1,b/k]。[1,d]转化为[1,d/k]。这样的话只需要for循环i从1到b/k,找出来区间[1,d/k]内有多少数与i互质就行了
但是要注意题目说了x=5,y=7和y=5,x=7是同一对,那这就需要去重,这一点具体见代码
代码:
1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<math.h>
6 #include<queue>
7 using namespace std;
8 typedef long long ll;
9 const int maxn=100000;
10 ll v[maxn],index;
11 void oula(ll n) //获取n的所有质因数
12 {
13 index=0;
14 for(ll i=2; i<=sqrt(n); ++i)
15 {
16 if(n%i==0)
17 {
18 v[index++]=i;
19 n/=i;
20 while(n%i==0)
21 n/=i;
22 }
23 }
24 if(n>1)
25 v[index++]=n;
26 }
27 ll get_result(ll n)//容斥原理
28 {
29 ll ans=0;
30 for(ll i=1;i< (1<<index) ; i++)
31 {
32 ll ones=0,mult=1;
33 for(ll j=0;j<index;j++)
34 {
35 if(i & (1<<j))
36 {
37 ones++;
38 mult*=v[j];
39 }
40 }
41 if(ones&1)//奇数加,偶数减
42 ans+= n/mult;
43 else
44 ans-= n/mult;
45 }
46 return n-ans;
47 }
48 int main()
49 {
50 ll t,p=1;
51 scanf("%lld",&t);
52 while(t--)
53 {
54 ll a,b,c,d,k;
55 scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
56 if(k==0) {printf("Case %lld: 0\n",p++);continue;}//k==0特判
57 if(b>d) swap(b,d);
58 d/=k,b/=k;
59 ll ans=0;
60 for(ll i=1;i<=b;i++)//1~b区间
61 {
62 oula(i);
63 ans+=get_result(b);
64 }
65 ans=(ans+1)/2; //这个除2就把那个 x=5,y=7和y=5,x=7是同一对 这个要求满足了
66 for(ll i=b+1;i<=d;i++)//b+1~d区间
67 {
68 oula(i);
69 ans+=get_result(b);
70 }
71 printf("Case %lld: %lld\n",p++,ans);
72 }
73 return 0;
74 }
GCD HDU - 1695 容斥原理(复杂度低的版本)的更多相关文章
- D - GCD HDU - 1695 -模板-莫比乌斯容斥
D - GCD HDU - 1695 思路: 都 除以 k 后转化为 1-b/k 1-d/k中找互质的对数,但是需要去重一下 (x,y) (y,x) 这种情况. 这种情况出现 x ,y ...
- GCD HDU - 1695(容斥原理)
要求从满足gcd(x, y) = k的对数,其中x属于[1, n], y属于[1, m] gcd(x, y) = k ==>gcd(x/k, y/k) =1 x/k属于[1, n/k], y/k ...
- hdu 1695 容斥原理或莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- GCD HDU - 1695 (欧拉 + 容斥)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- GCD HDU - 1695 莫比乌斯反演入门
题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/ ...
- HDU 1695 容斥
又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @Fil ...
- HDU 5514 容斥原理
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- - Visible Trees HDU - 2841 容斥原理
题意: 给你一个n*m的矩形,在1到m行,和1到n列上都有一棵树,问你站在(0,0)位置能看到多少棵树 题解: 用(x,y)表示某棵树的位置,那么只要x与y互质,那么这棵树就能被看到.不互质的话说明前 ...
- 低JAVA版本,高兼容性启动
低JAVA版本,高兼容性启动 背景:部分操作系统java环境低版本,暂时无法更新最新版本,新系统需要使用较高版本Java环境 1.JAVA低版本不兼容当前应用 2.解压安装JAVA,无需配置环境变量 ...
随机推荐
- kubernetes环境部署单节点redis
kubernetes部署redis数据库(单节点) redis简介 Redis 是我们常用的非关系型数据库,在项目开发.测试.部署到生成环境时,经常需要部署一套 Redis 来对数据进行缓存.这里介绍 ...
- TCP/IP五层模型-应用层-DNS协议
1.定义:域名解析协议,把域名解析成对应的IP地址. 2.分类:①迭代解析:DNS所在服务器若没有可以响应的结果,会向客户机提供其他能够解析查询请求的DNS服务器地址,当客户机发送查询请求时,DNS ...
- 【Oracle】translate函数用法解析
转自:https://blog.csdn.net/shwanglp/article/details/52814173 基本语法: translate(string,from_str,to_str); ...
- kubernets之控制器之间的协作以及网络
一 创建一个deployment的时候整个kubernets集群的资源和事件的调用链 1.1 创建一个deployment的资源,在提交的时候,集群中的调度器,控制器以及node节点上kubele ...
- P2327 [SCOI2005]扫雷(递推)
题目链接: https://www.luogu.org/problemnew/show/P2327 题目描述 相信大家都玩过扫雷的游戏.那是在一个$n*m$的矩阵里面有一些雷,要你根据一些信息找出雷来 ...
- ctfhub技能树—文件上传—文件头检查
打开靶机 尝试上传一个php文件 抓包修改 放包 制作图片马 上传图片马,并修改文件类型为png 测试连接 查找flag 成功拿到flag
- ctfshow—web—web4
打开靶机 发现与web3很相似,测试文件包含未成功 此题有两种解决方法 一.日志注入 查看日志的默认目录,得到了日志文件 ?url=/var/log/nginx/access.log 进行日志注入 & ...
- Jmeter-插件扩展及性能监控插件的安装
需要对http服务进行大数据量的传值测试:看看产品中的http服务,能支持传多少字符:目标值是希望能到10w+: 上次测试中,服务器总是内存满导致服务不响应,因此想增加对服务端的性能监控:查阅了smi ...
- # from tall import b from tall import * print(b) __all__ 模块 引用管理
├── __init__.py├── tall2.py└── tall.pytall.pya = 23b = 34class I: def __init__(self): print(444)clas ...
- python RecursionError: maximum recursion depth exceeded while calling
import copyimport sys # 导入sys模块sys.setrecursionlimit(8192) # 将默认的递归深度修改为r = sys.getrecursionlimit()_ ...