Gauss算法,称为高斯消元算法,用来解决n元一次方程,在解决线性方程问题起着重要作用。

简述

  运用高斯消元的方法,我们可以在O(n3)的时间求出n元线性方程,但是由于时间复杂度的原因,请注意题目数据范围的提示。

  高斯消元三大定理(在小学就学过了吧):

    1.两个方程互换位置,解不变;

    2.一个方程进行加减乘除,解不变;

    3.一个方程乘上数k加上另一个方程,解不变;

  这便是我们解决的基础;

过程:

  这里给出luogu例题链接,这样方便寻找;

  我们这里不用luogu的样例示范(因为不是整数好麻烦),这里给出方程

  2 x + 3 y - z = 21;

  x + 2 y + 2 z = 7;

   3 x + y + 5 z = 8; 

  我们将系数提出,然后就可以得到一个3 * 3的矩阵,之后将每个方程等号右边放到矩阵的最右边,就得到了:

  

  这里每个方程的结果与系数我用黑线隔开了,想必也更清楚;

  有了定理,我们理一下目标:

  我们如果将每一个方程只留下一个未知数的系数,那么最后就可以求解了,如:

  

  当然系数不一定只会是1,但是只要除一下就好,根据这个定义,我们将第 i 个未知数的前系数非零而且其他系数都为零,这个系数在矩阵的位置为 i ,i;

  这样的矩阵称为“简化阶梯矩阵”;

  我们只要将每个矩阵化成简化阶梯矩阵即可;

步骤:

  1.枚举第 i 个未知数(外循坏);

  2.决定在哪一行求解这个未知数:

    这里采用先对每一行 j 第 i 个系数找到最大值,有最大值的这一行定义为第ms行(名字随便起的,没有其他意思),然后将第ms行交换至第 i 行

  3.判断第i行第i个数的值是否为0,这里由于数学期望和精度问题,我们将这个判断改为这个数的值是否小于我们定义的那个精度,如果小于(那就相当于为0了),

    那么无解(因为这个项的系数是所有中最大的,所以其他的也都为0,一定无解);

  4.然后进行消元,就是将其他方程这个项的系数归0,这里有精度问题,但是从期望来讲,是不成问题的;

Code:

  (我才不会说其实我有模拟操作但是太麻烦不想写了。。。)

  不过我很良心,所以我有输出模拟,运行一下我的代码就行了;

  

#include<bits/stdc++.h>
#define maxn 107
#define db double
using namespace std;
int n;
const db cmp=1e-8;
db a[maxn][maxn]; //模拟啦 biu~
void biu(int x){
printf("work %d \n",x);
for(int i=1;i<=n;i++){
for(int j=1;j<=n+1;j++)
cout<<a[i][j]<<" ";
cout<<endl<<endl;
}
} int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n+1;j++)
scanf("%lf",&a[i][j]);
for(int i=1;i<=n;i++){
int ms=i;
for(int j=i;j<=n;j++)
if(fabs(a[j][i])>fabs(a[ms][i]))
ms=j;
if(fabs(a[ms][i])<cmp){
puts("No Solution");
return 0;
}
for(int j=1;j<=n+1;j++)
swap(a[i][j],a[ms][j]);
biu(2);
for(int j=1;j<=n;j++){
if(j==i) continue;
db rate=a[j][i]/a[i][i];
for(int k=i+1;k<=n+1;k++)
a[j][k]-=a[i][k]*rate;
}
biu(4);//良心模拟。。。
}
for(int i=1;i<=n;i++) printf("%.2f\n",a[i][n+1]/a[i][i]);
return 0;
}

例题

  P4035 [JSOI2008]球形空间产生器

题目描述

有一个球形空间产生器能够在 nnn 维空间中产生一个坚硬的球体。现在,你被困在了这个 nnn 维球体中,你只知道球面上 n+1n+1n+1 个点的坐标,你需要以最快的速度确定这个 nnn 维球体的球心坐标,以便于摧毁这个球形空间产生器。

输入格式

第一行是一个整数 nnn (1<=N=10)(1<=N=10)(1<=N=10)。接下来的 n+1n+1n+1 行,每行有 nnn 个实数,表示球面上一点的 nnn 维坐标。每一个实数精确到小数点后 666 位,且其绝对值都不超过 200002000020000。

输出格式

有且只有一行,依次给出球心的 nnn 维坐标( nnn 个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后 333 位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

  这个只要构造出矩阵即可;

  可惜我不会在博客上用数学公式。。。

  所以就随便写写了;

  设xi为第i维的坐标;

  sum(j=1,n) { (a[ i , j ] - x [ j ]) }=r^2;

  这样的方程共有11个,我们要将r消掉,所以将相邻的两个方程相减,得到11个方程,然后将多项式拆开,合并,移项得到;

  sum(j=1,n){ 2*(a[ i , j ] - a[ i + 1 , j ) * x [ j ] } = sum(j=1,n){ a[ i , j ] - a[ i + 1 , j ] };

  这样就可以将左边的作为方程左边,右边作为结果,列出矩阵,这里还不需要检验,直接上代码。。。

 

#include<bits/stdc++.h>
#define db double
using namespace std;
int n;
db a[17][17],c[17][17];
const db cmp=1e-8;
db calc(db x){return x*x;} int main(){
scanf("%d",&n);
for(int i=1;i<=n+1;i++){
for(int j=1;j<=n;j++){
scanf("%lf",&a[i][j]);
if(i==1) continue;
c[i-1][j]=2*(a[i-1][j]-a[i][j]);
c[i-1][n+1]+=calc(a[i-1][j])-calc(a[i][j]);
}
}
for(int i=1;i<=n;i++){
int ms=i;
for(int j=i+1;j<=n;j++)
if(fabs(c[j][i])>fabs(c[ms][i])) ms=j;
if(ms!=i) for(int j=1;j<=n+1;j++)
swap(c[i][j],c[ms][j]);
for(int j=1;j<=n;j++){
if(i==j) continue;
db rate=c[j][i]/c[i][i];
for(int k=i+1;k<=n+1;k++)
c[j][k]-=c[i][k]*rate;
}
}
for(int i=1;i<=n;i++) printf("%.3f ",c[i][n+1]/c[i][i]);
return 0; }

其实还有一些拓展内容,到时候再补充。。。

高斯消元初步(Gauss算法)的更多相关文章

  1. 高斯消元(Gauss消元)

    众所周知,高斯消元可以用来求n元一次方程组的,主要思想就是把一个n*(n+1)的矩阵的对角线消成1,除了第n+1列(用来存放b的)的其他全部元素消成0,是不是听起来有点不可思议??! NO NO NO ...

  2. 【BZOJ3270】【高斯消元】博物馆

    Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆.这座博物馆有着特别的样式.它包含由m条走廊连接的n间房间,并且满足可以从任何一 ...

  3. 洛谷P3389 高斯消元 / 高斯消元+线性基学习笔记

    高斯消元 其实开始只是想搞下线性基,,,后来发现线性基和高斯消元的关系挺密切就一块儿在这儿写了好了QwQ 先港高斯消元趴? 这个算法并不难理解啊?就会矩阵运算就过去了鸭,,, 算了都专门为此写个题解还 ...

  4. 高斯消元&&luogu3389

    高斯消元(Gauss) 高斯消元和我们做二元一次方程组差不多 流程: 1.把系数和右边的值就是用二维数组存下来->转化成矩阵 我们的目标是把这个矩阵装换成 上三角的形式 对角线系数全部为1,1下 ...

  5. 2017年中国大学生程序设计竞赛-中南地区赛暨第八届湘潭市大学生计算机程序设计大赛题解&源码(A.高斯消元,D,模拟,E,前缀和,F,LCS,H,Prim算法,I,胡搞,J,树状数组)

    A------------------------------------------------------------------------------------ 题目链接:http://20 ...

  6. HDU2449 Gauss Elimination 高斯消元 高精度 (C++ AC代码)

    原文链接https://www.cnblogs.com/zhouzhendong/p/HDU2449.html 题目传送门 - HDU2449 题意 高精度高斯消元. 输入 $n$ 个 $n$ 元方程 ...

  7. Gauss 高斯消元

    高斯消元…… (裸的暴力) 如果你有一个n元的方程组你会怎么办? Ans:直接用初中的解方程组的方法呀! 没错,直接暴力加减消元.那什么是“高斯消元”?说白了,就是普通的加减消元罢了. 本人再考场上打 ...

  8. 算法复习——高斯消元(ssoi)

    题目: 题目描述 Tom 是个品学兼优的好学生,但由于智商问题,算术学得不是很好,尤其是在解方程这个方面.虽然他解决 2x=2 这样的方程游刃有余,但是对于下面这样的方程组就束手无策了.x+y=3x- ...

  9. 算法竞赛进阶指南0x35高斯消元与线性空间

    高斯消元 目录 高斯消元 ACWing207. 球形空间产生器(点击访问) 求解思路 代码 ACWing208. 开关问题(点击访问) 思路 代码 总结 欣赏 线性空间 定义 ACWing209. 装 ...

随机推荐

  1. VRay for SketchUp渲染图黑原因及解决方案

    很多人都遇到用Vray for SketchUp云渲染的时候,渲染出来的图片是全黑或者是局部是黑色, 这是什么原因呢? 1.有一种情况是,SketchUp的文件储存机制和其他的软件有些不同,它是把模型 ...

  2. 【SpringBoot】Spring Boot 集成SwaggerAPI

    Spring Boot 集成SwaggerAPI 文章目录 Spring Boot 集成SwaggerAPI Swagger 添加依赖 配置类 config 控制类 controller 接口测试 页 ...

  3. 【Linux】saltstack 安装及简单使用

    准备三台server,一台为master(10.96.20.113),另两台为minion(10.96.20.117,10.96.20.118) 主机名(master.minion1.minion2) ...

  4. 2021年正确的Android逆向开发学习之路

    2021年正确的Android逆向开发学习之路 说明 文章首发于HURUWO的博客小站,本平台做同步备份发布.如有浏览或访问异常或者相关疑问可前往原博客下评论浏览. 原文链接 2021年正确的Andr ...

  5. zabbix-server安装部署配置

    zabbix-server安装部署配置 zabbixLinux安装部署安装脚本 1 一步一步部署 1.1 安装zabbix仓库源 这里安装阿里的zabbix仓库地址 选用zabbix版本3.4 rpm ...

  6. 干电池1.5V升压3.3V芯片电路图

    1.5V升压3.3V的芯片 PW5100 是一款大效率.10uA低功耗.低纹波.高工作频率1.2MHZ的 PFM 同步升压 DC/DC 变换器.输入电压可低0.7V,输入电压范围0.7V-5V之间,输 ...

  7. 1、进程管理常用命令和进程ID

    常用命令 1. ps (英文全拼:process status)命令用于显示当前进程的状态,类似于 windows 的任务管理器. 详细介绍参照:https://www.runoob.com/linu ...

  8. Spark底层原理详细解析(深度好文,建议收藏)

    Spark简介 Apache Spark是用于大规模数据处理的统一分析引擎,基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量硬件之上, ...

  9. PHP 框架之一Laravel

    Laravel: Laravel The phpFramework for Web Artisans and one of the best php framework in year 2014. L ...

  10. Zerotier在windows下实现内网远程桌面

    Zerotier实现内网远程桌面 使用背景 实验室设备条件过于恶劣 向日葵在有些场景下会莫名崩溃,或者画面不动. Teamviewer免费版在之前用的时候出现过疑似商业行为被断连,github上寻解决 ...