题意:有3种动物A、B、C,形成一个“A吃B, B吃C,C吃A ”的食物链。有一个人对N只这3类的动物有M种说法:第一种说法是"1 X Y",表示X和Y是同类。;第二种说法是"2 X Y",表示X吃Y。假设输入为(d,X,Y)。可知,当一句话满足下列三条之一时,这句话就是假话,否则就是真话。 

1) 当前的话与前面的某些真的话冲突,就是假话; 

2) 当前的话中X或Y比N大,就是假话; 

3) 当前的话表示X吃X,就是假话。
要求输出假话的总数。

解法:带权并查集。同【bzoj 1202】[HNOI2005] 狡猾的商人(图论--带权并查集+前缀和)类似,判断假话的条件一就是要与之前得到的结果冲突。所以推断出用并查集的原因绝对不是因为有3“种”动物,而是因为这个“之前有结果就判断,没有结果就存储”的操作。

于是由于已经知道要用并查集,就需要推出树上结点的关系,使f[x]表示动物x与其所在联盟的根节点R的关系(x→R)。再通过枚举的方法,列举出所有情况,得出规律。再应用到具体的函数等操作中。

QUESTION!!!(这里理应大写加粗~)  OMG!!!∑(゚Д゚ノ)ノ我突然间发现若用“方块图”,我下面的所有推导都显得无比无比的复杂啊!直接转换x→y(定义x下y上)的关系为:x到y的距离 或 x上面方块的个数,所有的都可以一步写出来呀!有神牛告诉我带权并查集都是可以这样理解的吗?!!!!所有的找父亲结点并更新自己的find(x)函数那里,f[x]都是f[x]+f[fx]吗。。。

推导过程如下:如图1所示,设x,y分别是R的子结点;如图2所示,x→R表示x吃R,相应数字。0为x,R同类,1为x吃R,2为R吃x;具体对应情况枚举如图3所示。
于是据图3找规律,相加不行便相减,发现(第一行数-第二行数+3)%3=第三行数,即(f[x]-f[y]+3)%3=d-1。(d为输入中x,y的关系种类)

因此,根据这一条树上的规律,我们就可以把它应用到所有函数中了。具体请见代码——

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 const int N=50010,M=100010;
8 int fa[N],f[N];
9 int n,m;
10
11 int ffind(int x)
12 {
13 if (fa[x]!=x)
14 {
15 int fx=fa[x];
16 fa[x]=ffind(fx);
17 /*推导:
18 f[x]=(f[x]-f[fa[x]]+3)%3;
19 =(f[x]-((3-f[fx])%3)+3)%3;
20 */
21 f[x]=(f[x]+f[fx])%3;
22 }
23 return fa[x];
24 }
25 int main()
26 {
27 scanf("%d%d",&n,&m);
28 int cnt=0;
29 for (int i=1;i<=n;i++) fa[i]=i,f[i]=0;
30 for (int i=1;i<=m;i++)
31 {
32 int d,x,y;
33 scanf("%d%d%d",&d,&x,&y);
34 if (x>n||y>n||(d==2&&x==y)) {cnt++;continue;}
35 d--;//
36 int fx=ffind(x),fy=ffind(y);
37 if (fx!=fy)
38 {
39 fa[fx]=fy;
40 /*推导:
41 int t=(3-f[x])%3;//fx->x
42 int tt=(3-d)%3;//y->x
43 int w=(t-tt+3)%3;//fx->y
44 int ww=(3-f[y])%3;//fy->y
45 f[fx]=(w-ww+3)%3;//fx->fy
46 */
47 f[fx]=(f[y]-f[x]+d+3)%3;
48 }
49 else if ((f[x]-f[y]+3)%3!=d) cnt++;
50 }
51 printf("%d\n",cnt);
52 return 0;
53 }

--------------------------------------------------------------------------------------------------------------------------------

另外啊~我学习了一下好友的做法:x->y间的边权直接看成距离,1为x吃y,0为同类。这样一个食物链的x,y,z的关系都可直接推出!!○| ̄|_  orz~
还有,合并父亲时,可以让y变为fx的父亲,而不是fy变为fx的父亲,这样虽然增大了树的深度,但影响不大,重要的是可以节省一些代码。

【poj 1182】食物链(图论--带权并查集)的更多相关文章

  1. POJ 1182 食物链 【带权并查集】

    <题目链接> 题目大意: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我 ...

  2. POJ 1182 食物链 (带权并查集)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 78551   Accepted: 23406 Description ...

  3. POJ 1182 食物链 【带权并查集/补集法】

    动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说 ...

  4. poj 1182 食物链【带权并查集】

    设相等的边权为0,吃的边权为,被吃的边权为2,然后用带权并查集在%3的意义下做加法即可 关系为简单环的基本都可以用模环长的方式是用带权并查集 #include<iostream> #inc ...

  5. POJ 1182 食物链(带权并查集)

    传送门 食物链  Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 65579   Accepted: 19336 Descri ...

  6. POJ:1182 食物链(带权并查集)

    http://poj.org/problem?id=1182 Description 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1 ...

  7. 【poj 1984】&【bzoj 3362】Navigation Nightmare(图论--带权并查集)

    题意:平面上给出N个点,知道M个关于点X在点Y的正东/西/南/北方向的距离.问在刚给出一定关系之后其中2点的曼哈顿距离((x1,y1)与(x2,y2):l x1-x2 l+l y1-y2 l),未知则 ...

  8. 【poj 1988】Cube Stacking(图论--带权并查集)

    题意:有N个方块,M个操作{"C x":查询方块x上的方块数:"M x y":移动方块x所在的整个方块堆到方块y所在的整个方块堆之上}.输出相应的答案. 解法: ...

  9. 【poj 1962】Corporative Network(图论--带权并查集 模版题)

    P.S.我不想看英文原题的,但是看网上题解的题意看得我 炒鸡辛苦&一脸懵 +_+,打这模版题的代码也纠结至极了......不得已只能自己翻译了QwQ . 题意:有一个公司有N个企业,分成几个网 ...

随机推荐

  1. 【Flutter】容器类组件之剪裁

    前言 Flutter中提供了一些剪裁函数,用于对组件进行剪裁. 剪裁Widget 作用 ClipOval 子组件为正方形时剪裁为内贴圆形,为矩形时,剪裁为内贴椭圆 ClipRRect 将子组件剪裁为圆 ...

  2. LeetCode53 最大子序列问题

    题目描述: 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和.     示例:     输入: [-2,1,-3,4,-1,2,1,-5,4],   ...

  3. Linux复制某个目录下结构

    Linux复制某个目录下结构 ​结合tree命令把当前目录下的文件夹路径存储到document.txt文件,然后再使用mkdir命令把document.txt文件下的目录输入创建: tree -fid ...

  4. Log4j配置按照文件大小和日期分割日志文件

    目录 Log4j 下载地址 文件大小分割日志文件 以日期分割每天产生一个日志文件 自定义信息输出到日志文件 Log4j 下载地址 Log4j是Apache的一个开源项目,通过使用Log4j,我们可以控 ...

  5. python zxing包解析二维码报UnicodeDecodeError错误解决办法

    一般错误的原因是这个库不支持中文的解码(二维码内容包含中文). 修改如下: 进入zxing.__init__.py代码中,类BarCode下,parse方法中: 找到下面这两行原代码如下: 1 raw ...

  6. SAP里会话结束方法(杀死进程)

    在SAP的ERP里,有很多方法可以结束一个会话,然而在不同情况下,需要使用的方法也不同.下面从先后顺序来简单说明:1.SM04:最常用的方法,在SM04点击工具栏的会话->结束会话,来关闭一个会 ...

  7. click的简单使用

    click的简单使用 先通过一个简单的例子来认知一下click把 import click @click.command() @click.option('-p', '--port', default ...

  8. nfs samba文件共享服务

    (注意:实验之前强关闭selinux和防火墙) 一丶nfs ① 1.服务端 启动服务 systemctl start nfs.service   配置文件 vim /etc/exports share ...

  9. 使用Python的pandas模块、mplfinance模块、matplotlib模块绘制K线图

    目录 pandas模块.mplfinance模块和matplotlib模块介绍 pandas模块 mplfinance模块和matplotlib模块 安装mplfinance模块.pandas模块和m ...

  10. redis 主从复制 和集群

    redis集群最少三个节点 之间相互通信ping-pong 投票选举机制 主从复制 的话 最少六个节点 ,主三从三